
PRINCETON UNIVERSITY

Dance Studio:
A Choreography Simulation Tool

Author:
Janet LEE

Advisors:
Dr. Robert DONDERO

Dr. Szymon RUSINKIEWICZ

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF ARTS

DEPARTMENT OF COMPUTER SCIENCE

PRINCETON UNIVERSITY

May 2020

Dance Studio: A Choreography Simulation Tool Janet Lee

I hereby declare that I am the sole author of this thesis.

I authorize Princeton University to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

Janet Lee

I further authorize Princeton University to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

Janet Lee

1

Dance Studio: A Choreography Simulation Tool Janet Lee

Acknowledgements

This thesis would not have been possible without the love, care, and support of many individ-
uals, for whom I am extremely grateful.

To Professor Dondero and Professor Rusinkiewicz, thank you for your kindness, support, and
guidance this past year. Although the road to completing this thesis was certainly not an easy one, I
am grateful for your patience in every Thursday meeting, both in person and on Zoom, and for your
continual encouragement that always made this project more of a delight than a burden. Professor
Dondero, thank you for believing in me and for always challenging me to produce high-quality
work and to relentlessly debug for the sake of the user. Professor Rusinkiewicz, thank you for
mentoring me through unfamiliar technologies, and for your continual reality checks and humor
that helped me stay on track. Your support exceeded my expectations, and I am so blessed to have
received so much wisdom from not one, but two, advisors.

To Six14 and Naacho, the communities that inspired this project, thank you for introducing
me to the world of dance. My four years at Princeton would not have been the same without the
countless late night rehearsals, Wa runs, freezing photoshoots, and Heaven weeks in Frist. You
have shown me the joy of dance and have been families to me on campus, and for that, I am so
thankful.

To Phillip, Jessica, Moses, Josh C, Buff, Joane, Jinn, Eunice, Esther, and Amber, thank you
for giving your time and energy to test my application. Whenever I felt downcast, your responses
to using Dance Studio encouraged me to continue working. Without you, this thesis would not be
possible.

To my dear friends, thank you for the most memorable four years at Princeton. To my Spelman
76 cohabitants, it’s been a wild ride - I miss our thesis crying parties, oat milk obsessions, and
mutual lack of respect for personal space. You have truly made Spelman into a home away from
home. To my brothers and sisters in Alabaster Group and Manna Christian Fellowship, I am so
grateful to have been able to run this race together, sharpening one another as we pursue Christ. To
the Sunday prayer group, I can so clearly see God’s abundant love through your selfless desire to
pray for me and my family in this final semester, and for that, I give thanks. To my thesis fairies,
Marisa, Rachel, Joice, and Lillian: thank you for your snacks, prayers, and words of encourage-
ment that have brought so much delight and joy amidst many trials. To Min Ji and Grace, my Zoom
study buddies, thank you for years of friendship that I am sure will continue far beyond Princeton;
this is certainly not goodbye.

To my parents, thank you for loving me and for providing for me so sacrificially every single
moment of my life. I am so deeply indebted to you, and while I cannot pay back all that you have
given to me, I hope to one day love my children the way that you love me. I love you!

Last but certainly not least, thanks be to God my Father. I thank you for all of the people
whom I mentioned above, since, after all, you created us. It is through you and for you that I
dance, through you and for you that I write this thesis, and through you and for you that I do all
things. Thank you for your patience, provision, and unconditional love every single day of my life.
I dedicate this thesis to you. Soli deo Gloria!

And David danced before the Lord with all his might.
-2 Samuel 6:14a

2

Dance Studio: A Choreography Simulation Tool Janet Lee

Abstract

In dance, blocking formations is a critical aspect of choreography; however, there

is currently no way to visualize how dancers will look and move onstage in real

life. This problem often makes choreography a burdensome and intimidating

task and stifles creativity. This paper details the design, implementation, and

evaluation of Dance Studio, an online choreography simulation tool that solves

this issue by enabling users to visualize and animate their formations with 3D

computer graphics. In the application, users can upload music, play the dance

back to see transitions between formations in real time, and anticipate collisions

between dancers. Most notably, unlike other dance applications, Dance Studio

offers users the ability to control dancers’ movement by creating custom non-

linear paths. Through technical analysis and user evaluation, I demonstrate that

Dance Studio successfully provides a medium for choreographers to translate

their ideas from their mind, to the screen, to the stage.

3

Dance Studio: A Choreography Simulation Tool Janet Lee

Contents

1 Introduction 8

2 Related Work 11

2.1 Danceapp.us . 11

2.2 StageKeep . 12

2.3 Comparison . 12

3 Approach 15

4 Implementation 19

4.1 System Architecture . 19

4.2 Database . 20

4.3 Server . 20

4.4 Front-End . 20

4.4.1 Homepage and Login . 21

4.4.2 Stage and Dancers . 22

4.4.3 Timeline . 24

4.4.4 Updating the dance in real time . 27

4.4.5 Editing Paths . 28

4.4.6 Sidebar GUI . 31

4.4.7 Edit Dance Modal . 33

4.4.8 Welcome/Edit My Dances Modal . 33

5 Evaluation 35

5.1 Technical Analysis . 35

5.2 User Evaluation . 35

6 Limitations and Future Work 41

4

Dance Studio: A Choreography Simulation Tool Janet Lee

6.1 Known Limitations . 41

6.2 Future Work . 42

6.3 Future Applications . 42

7 Conclusion 44

A Database Schema 47

A.1 User Table . 47

A.2 Dance Table . 47

B User Task List 49

B.1 Basic Use . 49

B.2 Intermediate Use . 49

B.3 Advanced Use . 50

B.4 Advanced Use (Optional) . 51

5

Dance Studio: A Choreography Simulation Tool Janet Lee

List of Figures

1 Formations documented on pen and paper . 9

2 Dance Studio user interface . 10

3 Danceapp.us user interface . 11

4 StageKeep user interface . 13

5 iMovie user interface . 17

6 Dance Studio system architecture . 19

7 Dance Studio landing page . 21

8 Dance Studio main interface . 22

9 Dance Studio stage and dancers . 23

10 Dance Studio timeline . 24

11 Dance Studio user path editing . 28

12 Different types of Catmull-Rom splines . 30

13 Dance Studio sidebar user interface . 31

14 Dance Studio ”Edit Current Dance” Modal . 32

15 Dance Studio ”Edit My Dances” Modal . 33

16 Dance Studio Welcome Modal . 34

17 A before and after user evaluation comparison of the Dance Studio sidebar 39

6

Dance Studio: A Choreography Simulation Tool Janet Lee

List of Tables

1 Different methods of documenting dance formations 14

2 Nielsen’s Heuristics as implemented in Dance Studio. 36

7

Dance Studio: A Choreography Simulation Tool Janet Lee

1 Introduction

Dance is an exciting medley of physical strength and artistic expression; for many, the process of

choreographing is enjoyable, until one must consider how to position dancers onstage. Otherwise

known as “blocking,” setting formations can be quite tedious and challenging because it is difficult

to visualize how dancers will move onstage in real life. Many college dance routines last an

average of 3-5 minutes, containing anywhere from one to twenty or more dancers performing in

the same space. While filming oneself dancing is an effective way to remember the dance moves

for the routine, there is no simple solution to keeping track of twenty dancers’ positions for every

second in a routine. The goal of this project is to resolve this issue by assisting users with creating

choreography.

To better understand how choreographers currently organize their formations, I surveyed ten

student dancers at Princeton. The majority typically keep track of formations by drawing out

each position individually with pen and paper, representing individual dancers with circles or their

initials. While this is an intuitive and quick way to jot down one’s thoughts, the pen and paper

method has several limitations. First, because the choreographer must visualize each formation

change mentally, it is difficult to anticipate collisions between dancers in between formations.

Often, these collisions only become apparent when dancers are actually learning the dance in

rehearsals and end up conflicting with each other while transitioning between formations. At best,

this scenario wastes precious rehearsal time, but at worst, it can result in dancers’ injury. Secondly,

modifying the formations requires erasing and redrawing the formations on paper, which is time

consuming, possibly discouraging choreographers from freely experimenting with their dancers’

positions. Additionally, indicating where each formation is in the music cut proves somewhat

cumbersome - the choreographer must write down a particular song lyric, a timestamp in the music,

or a specific 8-count to indicate when a formation starts and ends. Finally, losing the physical sheets

of paper often results in the dance’s formations being lost altogether.

The next most popular method of documenting formations is via Google Slides, with forma-

tions being represented by slides with initials on them. One benefit of Google Slides is its ac-

8

Dance Studio: A Choreography Simulation Tool Janet Lee

Figure 1: Formations documented on pen and paper.

cessibility; unlike pen and paper, users are able to access the platform from anywhere with an

Internet connection, and Google Slides enables multiple users to view and edit the same file si-

multaneously. Additionally, this digital method is more persistent in that users are less likely to

accidentally delete a Google Slides file than they are to lose a piece of paper. Despite these ad-

vantages, however, Google Slides still suffers from the same limitations of not allowing the user to

visualize transitional movement between formations in time with music.

Lastly, one choreographer told me that the process of documenting formations was too cum-

bersome altogether, so he simply creates formations on the spot during rehearsals. His feedback

coupled with the insights from other dancers demonstrated a clear need for a better way to doc-

ument formations. As a dancer and choreographer myself, I wanted to develop a solution to this

problem to simplify the choreography creation process.

Dance Studio is a choreography documentation and simulation tool that allows choreographers

to create, edit, and visualize their formation changes on a 3D model of the dancers and stage,

mapped in time to music. By eliminating the limitations and hassle of keeping track of dancers’

positions with hand-drawings, Dance Studio encourages choreographers to experiment more with

9

Dance Studio: A Choreography Simulation Tool Janet Lee

incorporating creative formations into their routines.

The main features of this tool are: 1) users can easily create custom formations on a 3D graph-

ical interface, 2) users can upload their own audio file for each dance, 3) users can visualize their

formation changes animated in real time to music, 4) users can proactively anticipate and work

around collisions between dancers by creating non-linear paths between formations, and 5) dances

are saved and accessible online at any time from anywhere.

Dance Studio is most suited for dance styles with the following characteristics: 1) having no

more than twenty dancers onstage at a given time, and 2) having distinct formations, meaning

dancers are not constantly moving, and there is a distinction between stationary positioning and

transitional movement. Some examples of dance styles that meet these criteria are hip-hop, lyrical,

Bollywood, Bhangra, and Raas.

On the basis of user studies, Dance Studio accomplishes its goals, as demonstrated by all users

giving the application positive feedback and preferring to choreograph on the platform to their old

method. On average, all users were extremely likely to use the application to choreograph dances

in the future.

Figure 2: A screenshot of the Dance Studio user interface [21].

10

Dance Studio: A Choreography Simulation Tool Janet Lee

2 Related Work

Several dance formation tools and choreography simulators already exist; however, few are avail-

able for free, and of the options that are available publicly, the usability is extremely limited. In

this section, I give an overview of other applications that seek to accomplish the same goal.

2.1 Danceapp.us

Danceapp.us is the most similar application to my project, in that it looks like a video editor with a

stage and allows the user to map individual dancers onto various places on stage at different points

in time, as seen in Figure 3 [4].

Figure 3: A screenshot of the Danceapp.us user interface [4].

Danceapp.us helps users visualize dances, allowing the user to play back the dance routine with

animations that show transitions between formations. However, this application is limited in that

it does not allow users to upload music, and it is rather clunky in its appearance. When I tested

this application with student choreographers at Princeton University, every single test user was

unsure of how to create a new formation to the routine, and it took them several minutes to become

accustomed to the user interface. Additionally, the dancers all move in a linear path by default,

11

Dance Studio: A Choreography Simulation Tool Janet Lee

so users are unable to create more elaborate dances with non-linear paths. Furthermore, while

Danceapp.us is easy to access using any web browser at http://danceapp.us/, this application

does not allow users to save and retrieve their dances, so practically, it is less persistent than using

pen and paper.

2.2 StageKeep

Another app on the market is StageKeep [23]. While its aesthetically pleasing user interface offers

more features than Danceapp.us, allowing the user to upload music and visualize their formations

with an actual timeline, there are still several limitations. First, the dancers are represented by

2D circles from an aerial view of the stage, rather than in a 3D interface that allows users to

change the camera view. Distinguishing between dancers is not very clear because all dancers are

circles with the same color, unlike in Danceapp.us, where dancers have customizable colors and

names. Additionally, like Danceapp.us, StageKeep can only linearly interpolate between positions

for dancers’ transitions, meaning that it does not offer users solutions to resolve dancers’ collisions.

StageKeep’s biggest barrier to entry is its price point - while it is free to download the ap-

plication, the user must pay a minimum of $9.99/month to gain full usability of the application,

with unlimited formations, dancers, custom music, and cloud saving. The most expensive plan is

$299.99/month, allowing additional users to share and edit the same dances [23]. Most choreogra-

phers, especially novices exploring dance for the first time, are unwilling to commit to paying for

a choreography software at such a high price point. As a result, it is not a feasible nor a practical

solution to simplify the choreography process.

2.3 Comparison

While both of these applications certainly improve upon certain aspects of using pen and paper

to traditionally plan out formations, they both fall short in not offering users enough flexibility or

ease of use. Dance Studio, my implementation of a choreography simulation tool, combines the

most valuable components of each of these different pieces of related work, while improving upon

12

Dance Studio: A Choreography Simulation Tool Janet Lee

Figure 4: A screenshot of the StageKeep user interface [7].

their shortcomings. The design prioritizes user experience, relying on constant feedback from

real choreographers who test the application and relay what was most effective and what could be

improved. My project aims to improve upon the existing frameworks in all areas, as detailed in

Table 1.

13

Dance Studio: A Choreography Simulation Tool Janet Lee

Feature Means of Formation Planning

Pen and
Paper

Danceapp.us StageKeep
Dance
Studio

Free 3 3 7 3

Allows users to play
back their routine

7 3 3 3

Users can upload
music

7 7 3 3

Users can save and
retrieve their work

3 7 3 3

Quality User Inter-
face

7 7 3 3

Has a 3D rendering
of the dance

7 3 7 3

Provides solutions to
proactively resolve
collision avoidance

7 7 7 3

Table 1: A table comparing qualities of different methods of documenting dance formations.

14

Dance Studio: A Choreography Simulation Tool Janet Lee

3 Approach

Dance Studio is designed to provide a flexible framework that can accommodate both experienced

choreographers and novice dancers. As a result, to understand what features would be important

to include for both types of users, I interviewed a variety of dancers at Princeton, some who were

more experienced choreographers able to mentally visualize formations, and other more novice

members of the dance community who have never choreographed before. In addition to conducting

quantitative interviews, I went through mock testing sessions using existing applications on the

market (DanceApp.us and StageKeep) to identify users’ frustrations. On the basis of interviews,

users appear to desire an application with the following characteristics:

• Users can see animated transitions between formations. This is the core functionality

of the application that distinguishes it from pen and paper, choreographers’ current medium

of documenting formation changes. Choreographers struggle to visualize formation changes

and would greatly benefit from the ability to see a moving, animated version of their dancers.

• Users can upload music and play the dance in real time with music. Choreographers

generally create formations based on their music, whether it is with 8-counts or with the song

lyrics. As a result, hearing the music as one sees the formations is necessary to accurately

create formations with the correct time stamps.

• Users can save and retrieve their work through a persistent web application. Choreog-

raphers expressed that they would like to have the option to access their dances at any time,

from any place without the risk of misplacing it like pen and paper, and a system that allows

them to revisit previously created dances. Hosting an application on the web offers users this

convenience.

• Users can make a basic dance in under a minute. The benefits of creating an animated

dance are limited by the cost of adjusting to a new user interface. As a result, the application

must be easy to use and intuitive to users, much like drawing formations with pen and paper.

15

Dance Studio: A Choreography Simulation Tool Janet Lee

• Users can customize dancers’ names and colors. To avoid confusion between dancers, and

for the sake of dancers in the piece learning their positions in the routine, it is imperative to

be able to clearly distinguish between dancers. When using pen and paper, choreographers

typically identify distinct dancers by their initials for shorthand. However, this becomes

problematic when multiple dancers in the same routine have identical initials. As a result,

personalization with full names visible for each dancer as well as distinctive colors mini-

mizes confusion between dancers. Furthermore, as an alternative use, choreographers can

experiment with costume color schemes by customizing the colors of their dances.

• Users can not only visualize dancer collisions during transitions between formations,

but also create non-linear paths for dancers to avoid collisions. This feature was by

far the most requested by the surveyed potential users. The primary limitation in draw-

ing formations with pen and paper is not that formations are difficult to visualize, but that

choreographers are unable to anticipate collisions with 100% accuracy. Typically, dancers

realize there is a point of collision during rehearsal and resolve the conflict by explicitly

defining their paths. Both may take winded paths to travel to the next position, or one per-

son may delay or accelerate their movement to avoid being in the same space concurrently.

The proposed application will replicate this behavior by providing the user the option to

create curved paths as well as manipulate the speed of the dancer as she travels along the

path. In addition, the option to create non-linear paths also has applications beyond collision

avoidance - in many styles of dance (modern, lyrical, traditional South Asian dance, etc.),

dancers move in curved paths, sometimes even moving in a circle. This feature would allow

choreographers of all styles to visualize their dances.

In addition, some users specified they would like to have the following features:

• Users can change the camera view. Choreographers typically plan their formations from

an aerial view, but they would like to ensure that their dance is equally impressive from the

perspective of an audience member, both in the center of the house and in the seats on the

16

Dance Studio: A Choreography Simulation Tool Janet Lee

edges of the auditorium. Additionally, a mobile virtual camera would provide dancers an

onstage perspective. This feature necessitates that the application render the dance in three

dimensions.

• Users can change the playback speed of the routine. Choreographers may want to speed

through slow transitions and long motionless sections in their piece. Alternatively, they may

need to slow down the dance routine during fast-paced transitions.

The user interface of Dance Studio is inspired by existing tools such as Blender, a 3D modeling

software, as well as iMovie, which is a popular video editing tool with a similar GUI, with the

screen partitioned into a bottom timeline section, a main video editing section, and a small side

panel for additional features as seen in Figure 5 [19, 6]. These applications are commonly used for

video editing and 3D animation.

Figure 5: A screenshot of the iMovie user interface [5].

In general, my project relies centrally on a timeline in the editor, allowing the user to have

greater control over where in the song to put various key frames representing different dancers’

formations. A timeline is extremely beneficial to choreographers in pinpointing exactly where in

17

Dance Studio: A Choreography Simulation Tool Janet Lee

the song a formation change occurs. Additionally, having the ability to play the song back from a

set point in time is a key component of Dance Studio, allowing choreographers to actually practice

the dance repeatedly with music, rather than without sound.

18

Dance Studio: A Choreography Simulation Tool Janet Lee

4 Implementation

Dance Studio is a three-tier application that allows users to log in with a Facebook or Google

account, create full-length dance routines with any number of dancers, upload music (with a vi-

sualization of the audio on the timeline), and save their dances to their account to be accessed at

a later time. The user is able to “undo” moves, delete keyframes, and adjust keyframes along the

timeline.

4.1 System Architecture

Figure 6: A diagram of Dance Studio’s system
architecture.

The structure of the application is divided into

three tiers. The first tier is the graphical user

interface in the form of a website. The sec-

ond tier is the server processing tier. Its client-

facing interface is a RESTful API that ac-

cepts GET or POST requests when the client

would like to view data currently stored in the

database or would like to update data in the

database. Lastly, the final tier is the database,

which stores relational information about users

- namely, their dances and login information.

The application is deployed at https:

//dancetigers.herokuapp.com/ via

HerokuApp, which was chosen because of my

prior experience with the service, its free pric-

ing tier, and its convenient compatibility with

Postgresql. HerokuApp’s in-house Postgres

database service, Heroku PostgreSQL, enables

19

Dance Studio: A Choreography Simulation Tool Janet Lee

developers to create and manage their application databases that run continuously online [10]. To

set up the system, I followed Sahil Diwan’s blog post “Making a Flask app using a PostgreSQL

database and deploying to Heroku“ [13].

4.2 Database

The PostgreSQL database consists of two tables: Users and Dances. The Users table tracks Dance

Studio users, based on the information retrieved from Facebook or Google login, while the Dances

table contains all dances created by all users of the application. For a detailed database schema,

see the Appendix, Part A.

4.3 Server

The back-end server is implemented with Python Flask. Clients interact with the server through a

RESTful API. Since the application is structured around the relational nature of the database, GET

and POST requests to the server are sufficient to access or modify data without having a stateful

connection to the server.

SQLAlchemy is a Flask extension used to facilitate communication with the database [11].

Endpoints that update or retrieve data from the database with SQLAlchemy use a secret key to

maintain the integrity and limit the visibility of private data. The server interfaces with Flask-

Login, a Flask extension that facilitates user session management, to authenticate users to the

server [8]. On receiving requests to update the User table of the database or the Dances table of

the database, it makes the appropriate call via SQLAlchemy. It also returns objects representing

dances in a JSON format to the client to render a particular user’s dances.

4.4 Front-End

The front-end of the website is built with Bootstrap 4, HTML 5, CSS 3, and JavaScript. I chose

Bootstrap 4 because of its smooth integration with HTML5 and built-in responsive features. Addi-

20

Dance Studio: A Choreography Simulation Tool Janet Lee

tionally, all of the graphics computation is accomplished through Three.js, a JavaScript 3D library

that is used to create and display animated computer graphics in web browsers [14]. Three.js relies

on WebGL, a JavaScript API, to render its graphics on web browsers without the use of additional

plug-ins [16]. The user interface exclusively sends GET and POST requests to the user server.

4.4.1 Homepage and Login

Figure 7: The landing page for Dance Studio [21].

Description: As seen in Figure 7, the landing page offers users the option to sign in with

either Facebook or Google; clicking either button will redirect the user to a page created by the

platform to authorize their account to be used with Dance Studio. The front-end interface is adapted

from a template created by ColorLib [1]. The use of Facebook and Google accounts means that

the application is accessible to a wide variety of users, and that secure password management is

offloaded onto those platforms.

Implementation: Dance Studio uses Flask-Login to facilitate login and account management,

so that users can log in to the application via Facebook and Google. Each user is uniquely identified

by their account id, which is retrieved by accessing the Google OAuth API. Once authenticated,

21

Dance Studio: A Choreography Simulation Tool Janet Lee

the user remains logged in until the browser is closed or until they logout.

Figure 8: The main interface of Dance Studio [21].

Figure 8 shows the main interface of the application. The following sections provide detailed

descriptions of the functionality of each component, as well as how they were implemented.

4.4.2 Stage and Dancers

Description: The stage and dancers as shown in Figure 9 is the main user interface for editing the

dance, where the dancers are represented by rectangular prism meshes of different colors, and the

stage is a section of a plane made to appear like wood. The dancers’ names are shown above the

meshes with a text sprite with a black background and white text for readability. In the bottom left

corner of the GUI, the total number of keyframes is displayed, and in the other bottom corner, the

current time within the dance is displayed. The user can move the dancers one at a time simply by

clicking and dragging the mesh; when the user clicks on a dancer, its mesh will become a lighter

color to clearly indicate to the user that the dancer is being selected. However, dancers always

remain on the y-axis (which is perpendicular to the stage), so they cannot be pulled underneath or

far above the stage. In addition, the user can manipulate the camera view by clicking and dragging

22

Dance Studio: A Choreography Simulation Tool Janet Lee

Figure 9: The main editing interface, showing a routine with 10 dancers [21].

anywhere else in the GUI, or zoom in and out by scrolling up or down. Furthermore, the user can

move the camera position by using two fingers on a touchpad to drag the camera to the new desired

position.

Implementation: The entire scene is visible through a camera that is positioned at a predeter-

mined default viewing angle relative to the stage. Several Three.js point light objects illuminate the

scene to allow the user to see the objects clearly and vividly. The stage is implemented in Three.js

as a mesh created by plane geometry and the mesh phong material, which maps an image of a

wooden floor onto the mesh. Dancers are similarly visually represented by meshes created from

box buffer geometry and mesh lambert material with an image mapped onto it. The text sprites

above the individual dancers display the dancers’ names; this was created from adapting the tuto-

rial to create text sprites in Three.js by Johannes Raida [22]. In essence, a canvas is created to be

positioned above each dancer mesh with a black background and white text to show the dancer’s

name.

Dancers are represented as Javascript objects with the following attributes:

• keyframePositions: an array of keyframes representing the dancer’s position, begin-

23

Dance Studio: A Choreography Simulation Tool Janet Lee

ning and ending times, and the corresponding transitional paths between keyframes. See

Section 4.4.3 for more details.

• name: the dancer’s name, which is set by the user or defaults to “Dancer1”, “Dancer2”, etc.

• mesh: a Three.js mesh created from BoxBufferGeometry and MeshLambertMaterial.

The ability to drag and move the dancers is implemented through the technique described in the

Script Tutorial “Three.js - Drag and Drop Objects” [17]. Within the “onDocumentMouseDown”

event listener, a Three.js raycaster object checks if the user’s selection intersects with any of the

objects in a pre-defined array of “selectable” objects, then updates the position of the selected

object by repositioning the object to its intersection point with the y-axis plane.

4.4.3 Timeline

Figure 10: The timeline portion of the user interface [21].

Description: The timeline as shown in Figure 10 is the secondary user interface for editing the

dance. The thin red bar indicates the current time within the dance, while the thin black bar with

the time signature indicates the time hovered over by the user’s cursor. If the user clicks, the red

bar will update its position as the application updates the current time. The numeric scale at the

top of the timeline delineates the time to the nearest thousandth of a second.

Audio is represented by the pink and purple sound waveforms that vary in height depending

on the pitch and volume of the audio. As a result, the user can easily visually identify points in the

song to place certain formations. The waveform representing the portion of the audio that has not

been played yet is pink, while the remaining portion of the waveform is purple.

24

Dance Studio: A Choreography Simulation Tool Janet Lee

Keyframes, otherwise known as distinct formations, are represented visually by green and

yellow rectangles that each have a beginning time, end time, and duration. As the user hovers over

a keyframe, or if the current time is within a keyframe, it becomes yellow in color. The user can

slide the black handles on the border of each keyframe to adjust its beginning or end times, or

click and drag the keyframe from its colored middle section to move it in either direction along

the timeline, even reordering the keyframes within the routine. Adjusting a keyframe preserves the

position of the dancers, only changing the timing of the formation. However, the user cannot move

the first keyframe from its position since there must always be a starting position to the dance. To

create a new keyframe, the user clicks on the time in the dance where he wants the keyframe to start,

then moves one of the dancers onstage to the next position. As a result, a keyframe is automatically

created: if the new keyframe is the last one in the sequence, its duration is 2 seconds; otherwise,

its duration is half the length of time between its beginning and the beginning of the next keyframe

(this is to ensure that in cases where the keyframe is less than 2 seconds before the next keyframe,

there is no overlap). If the user adjusts the positions of the dancers in an existing keyframe, it

will update itself to have the dancers’ new positions. The application automatically loads with

one keyframe already created from 0 seconds to 2 seconds; the user cannot delete this keyframe.

This is because the dancers have a default position upon loading, and every dance created has a

minimum of one formation.

Implementation: The timeline was implemented using wavesurfer.js, a “customizable audio

waveform visualization, built on top of Web Audio API and HTML5 Canvas” [15]. Wavesurfer.js

was selected due to its easy usability, thorough documentation, and numerous plug-ins that meet

the needs of Dance Studio’s features. Firstly, wavesurfer.js is built on Web Audio API, so it will

accommodate Firefox, Google Chrome, Safari, and Opera, which comprise all commonly used

browsers. The core functionality of wavesurfer.js allows the user to upload a music file (either

locally or via a URL) and will display a visualization of the sound waveforms, in addition to

allowing the user to play or pause the music. Additionally, the wavesurfer.js Timeline plugin

easily adds a notched panel with time increments to localize the audio file. Since wavesurfer.js

25

Dance Studio: A Choreography Simulation Tool Janet Lee

requires an audio file to show the timeline, if the user does not upload an audio file of their own,

Dance Studio automatically loads in a 3 minute long silent audio file.

The keyframes are visually represented by the wavesurfer.js Regions plugin. According to

their creator, “regions are visual overlays on [the] waveform that can be used to play and loop

portions of audio. Regions can be dragged and resized” [12]. When the user goes to a point in

time in the dance where there is no current keyframe, a new keyframe is created. Keyframes can

easily be deleted with methods from the Regions plugin API, and event listeners detect when visual

representations of keyframes are being dragged or resized to determine how to update the keyframe

data structures. Each region has, among other attributes, a beginning, an end, and a color. When

the user hovers over or is currently editing a keyframe, its color will change from green to yellow

for clarity.

In determining how to represent keyframes in a more abstract way, I had the option to base

keyframes off of the timeline, of the wavesurfer.js regions, or of the dancers individually. Ulti-

mately, I decided to represent keyframes based on individual dancers because I was mindful of the

issue of adding and removing dancers from the routine. However, in retrospect, a simpler solution

would be to store each dancer’s position within an object array in each keyframe. In other words,

rather than making dancers hierarchically superior to keyframes, it is actually more intuitive to

make keyframes the “parent” with dancers’ positions as one key-value pair in the keyframe object.

Keyframes are represented as Javascript objects for each dancer object, which has an array of

keyframes. Keyframes have the following attributes:

• beginning: indicates the absolute starting time of the keyframe in seconds.

• end: indicates the absolute ending time of the keyframe in seconds.

• position: indicates the dancer mesh’s position onstage for the keyframe.

• curve: a CatmullRomCurve3 object representing the curve corresponding to the dancer’s

path from the current keyframe to the next position. The final keyframe’s curve is null.

26

Dance Studio: A Choreography Simulation Tool Janet Lee

• splineHelperObjects: draggable, physical meshes that are boxes representing the

control points for the Catmull-Rom curve.

• positions: an array of positions that indicate where the spline helper objects are onstage.

The array of keyframes for each dancer is always sorted in chronological order, so as soon as a

keyframe is dragged or updated, it is repositioned within the array as well. If a wavesurfer.js region

is updated, Dance Studio checks if the keyframe’s new position overlaps with other keyframes, and

if it does, the user is notified that overlapping keyframes are not allowed, and the visual represen-

tation of the keyframe will return to its previous state. One challenge in checking for overlapping

keyframes is that the Regions API method does not return the region’s original beginning and end-

ing times, so it is difficult matching the updated region to the keyframe that it visually represents as

it is stored for each dancer. To work around this issue, I assign each wavesurfer.js region a specific

id that corresponds to its keyframe’s beginning time. Then, when a region is updated, while its

beginning and ending times may have changed, its id is still the beginning time of the keyframe,

so I check the id with the beginning time to identify the match. Once a match is found, I verify

that the new beginning and ending times do not conflict with any of the other existing keyframes.

4.4.4 Updating the dance in real time

One interesting design decision was to limit server-client communication as much as possible,

since most rendering and computation can occur entirely on the client side. Since the user is

constantly updating the positions of the dancers, and the Three.js animation loop must continually

render animation frames, the real time updating occurs within the client. Time is computed with re-

spect to the wavesurfer.js object. In an update() loop that is continuously called while rendering

the dance, I use the getCurrentTime() method from the wavesurfer.js object to determine the

time. Then, to properly update each dancers’ position, I iterate through the array of dancers. For

each dancer, I iterate through their keyframes to determine if the current time is within a keyframe

or between two keyframes. While this loop is proportional to the number of dancers multiplied by

27

Dance Studio: A Choreography Simulation Tool Janet Lee

the number of keyframes, the computation is so efficient that there is no delay in runtime. In the

first case where the time is within a keyframe, each dancer’s mesh position is the same position as

defined in the keyframe. In the case that the time is between two keyframes, k1 and k2, I compute

the time difference ρ between the beginning of k2 and the end of k1, then subtract k1’s ending time

from the current time to get a value δ . I finally determine the dancers’ progress between the two

keyframes by dividing ρ by δ , which results in a fraction. Between every two positions, there is a

Catmull-Rom Curve that delineates the path the dancer takes during the transition time (see Sec-

tion 4.4.5). For each dancer, I use the Three.js method curve.getPoint(frac: Float,

dancerPosition: Vector) to compute the point that is a fraction of the way along the

curve and assign the point value to the dancer position to update the mesh in real time. Lastly, if

the time is past the last keyframe’s ending time, the dancers simply remain in the last keyframe’s

position.

4.4.5 Editing Paths

(a) Default straight paths, resulting in a col-
lision [21].

(b) Paths after user adjusts them to avoid the
collision [21].

Figure 11: User path editing. In (a), the two dancers collide, but in (b), the custom paths prevent
them from being in the same place at the same time.

Description: By default, Dance Studio linearly interpolates between dancers’ positions to de-

fine their paths between keyframes. However, if there are collisions, or if the user desires to achieve

a particular movement style, the user can create custom non-linear paths for their dancers through

the Edit Paths feature. The user must check the “Edit paths” checkbox on the left sidebar to reveal

28

Dance Studio: A Choreography Simulation Tool Janet Lee

this feature, which enables the user to see visualizations of the paths dancers take during their tran-

sitions between keyframes (see Figure 11). The paths are represented by a thin curveable line in the

dancer’s color and five block-shaped boxes, three of which are in the corresponding dancer’s color,

and two on the end in a red hue. This color difference indicates to the user that they are only able

to edit the three middle blocks, because if they wanted to edit the endpoints, they can do so in the

keyframe instead. Furthermore, while the user is editing a path, the user can see a more transparent

version of the dancer’s mesh along the path as a guide, although the mesh is not draggable. The

remaining three boxes share the same color as the corresponding dancer to avoid confusion with

other dancers in the case that there are many paths onstage. To edit a dancer’s path, the user can

click and drag the three block meshes in the middle one at a time to move them to their new desired

position. The curve automatically updates in response to the user’s movements. Furthermore, hav-

ing three blocks allows the user to manipulate the dancers’ speed; there is an equal amount of time

between each block, so dancers move relatively faster when blocks are farther apart, and relatively

slower when blocks are close together.

Implementation: The paths were implemented using centripetal Catmull-Rom splines, which

are “piecewise polynomials that are used to pass through several control points” [3]. These splines

were selected as opposed to other implementations because they are already built into the Three.js

library, the control points would allow the user to easily edit the path (rather than an alternate

implementation of having the user draw the path with a mouse or trackpad), and the control points

allow users to manipulate the dancers’ speeds. Additionally, Catmull-Rom splines interpolate

between control points, meaning they pass through every single point, as opposed to approximating

splines that are estimates between the points. For Dance Studio, the former is more likely to be

intuitive for beginners since the curves closely follow the control points in a predictable manner.

For the Three.js CatmullRomCurve3 object, there are three distinct types of curves which all

differentiate themselves in how the curve is computed. I selected centripetal Catmull-Rom splines

in favor of chordal or uniform splines because the curve more closely follows the control points and

does not result in excessive looping (see Figure 12). Each representation of a curve is composed of

29

Dance Studio: A Choreography Simulation Tool Janet Lee

the CatmullRomCurve3 object, an array of five splineHelperObjects to display the draggable

blocks along the path, and an array of five positions that correspond to each of the blocks.

(a) Different types of Catmull-Rom splines
[9].

(b) Distinct Catmull-Rom splines repre-
sented in Three.js, where the red curve is
uniform, the green curve is centripetal, and
the blue curve is chordal [2].

Figure 12: Catmull-Rom splines with the same control points in 2D and 3D.

When a keyframe is added, a straight Catmull-Rom curve is created using simple linear inter-

polation between the two positions. As soon as a dancer’s position is updated, the curve is deleted

and recreated with the new positions. Additionally, if keyframes are rearranged in order, the curves

for the affected keyframes are removed and recreated. However, if a keyframe is dragged but the

keyframe order is preserved, the paths remain unchanged. By default, the curves are all created

with meshes set to have visibility = false, which is then changed if the user selects the

“Edit Paths” checkbox. To determine when to reveal a path, in the continuous update() loop, paths

are set to visible only if the current time corresponds to the time appropriate for the path to be

shown, and if the “Edit Paths” feature is on. Conversely, paths are set to being invisible at all other

times.

To allow the user to edit the paths by dragging the boxes, the same raycaster that was used to

check for dancer meshes also checks for curve blocks, since the user can only select one item at a

time (either a dancer mesh or a block along a path). A separate array keeps track of all selectable

blocks by constantly adding and removing relevant blocks depending on the current time of the

dance and the status of the “Edit Paths” checkbox; this is to avoid having the user unintentionally

drag invisible blocks out of position.

30

Dance Studio: A Choreography Simulation Tool Janet Lee

4.4.6 Sidebar GUI

Figure 13: The sidebar user interface [21].

Description: This sidebar not only reveals im-

portant information to users about the current

dance they are editing, but also allows users

to edit the current dance and to access other

dances. First, the top light blue bar contains the

user’s profile picture (taken from Facebook or

Google), a greeting with the user’s name, and

a power button that logs the user out. Moving

downward, the dance name is displayed, with a

help button on its right that opens a user tuto-

rial modal, followed by a button that opens the

“Edit Dance” modal (see 4.4.7) and a button

that opens the “Edit My Dances” modal (see

4.4.8). Next, a small canvas displays an aerial

view of the dance, which updates in real time

with the user’s edits. Having both the overhead

view and the main perspective view always

visible helps users ensure their formations are

lined up properly without forcing them to con-

stantly realign their main camera to the aerial

view. Below the canvas, a “Save Dance” button

allows users to manually save their dance, and the current “saved” status of the dance is displayed

on the right. If the dance is saved in the database, the message “Saved!” appears in white. If the

dance is currently in the process of saving, the message “Saving your changes. . . ” appears in yel-

low. Lastly, if there was an error in saving the dance, the message turns red and becomes “Error:

Unable to save changes. Try again.”, to prompt the user to click the button until the dance is saved

31

Dance Studio: A Choreography Simulation Tool Janet Lee

properly. These messages update in real time as the dance is continuously autosaved. Next, the

“Upload Music” button allows users to add an audio file from their computer’s local file system to

their dance, displaying the name of the file below in white. Below this, two checkboxes offer the

user options to toggle the “Edit Paths” and “Show Grid” features. A playback slider gives users

the option to manipulate the dance’s playback speed from 0.05× to 5× the normal speed, in incre-

ments of 0.05. Next, users can zoom in and out of the timeline by moving the corresponding slider.

Finally, directly above the timeline, five icons provide control over the timeline, with buttons to

play/pause the dance, play the dance from the beginning, undo the previous change, redo the pre-

vious undo, and delete the current keyframe. When the user hovers above each of these icons, a

tooltip appears above them to explain the functionality. To play and pause the dance, the user can

also press the space bar.

Implementation: The sidebar is implemented using Bootstrap 4 buttons, sliders, and contain-

ers, and the aerial view is created with a renderer in Three.js. The canvas renders the same scene

as in the main view from the perspective of a different camera, which cannot be adjusted by the

user.

Figure 14: The modal users can use to edit the current dance [21].

32

Dance Studio: A Choreography Simulation Tool Janet Lee

4.4.7 Edit Dance Modal

Description: As shown in Figure 14, this modal allows users to edit the current dance’s name and

dancers. In addition to adding new dancers, users can also modify existing dancers’ colors and

names.

Implementation: This modal is implemented using the Bootstrap 4 modal component, in ad-

dition to an HTML 5 form that presents the dance’s information and updates the dance according

to the user’s changes. This modal is identical to what the user sees when creating a new dance for

the first time.

4.4.8 Welcome/Edit My Dances Modal

Figure 15: Welcome Modal / Edit My Dances Modal for a user who has created two dances [21].

Description: As shown in Figures 15 and 16, these modals are accessible by automatically

appearing when the user logs into the application and if the user clicks the “Edit My Dances” button

from the sidebar. If the user has already created dances in Dance Studio, this modal displays each

dance’s name and an aerial view of the stage from the most recently saved version of the routine.

The user can edit existing dances by clicking on the name or the image, or delete a dance by

pressing the red button below its image. Additionally, the user can create a new dance by selecting

33

Dance Studio: A Choreography Simulation Tool Janet Lee

Figure 16: Welcome Modal for new users [21].

the blue button in the bottom right corner.

Implementation: These modals are implemented using Bootstrap 4’s modal component. Dance

Studio makes a GET call to the database to retrieve the user’s dances, and if there are none, then

the Welcome Modal appears. On the other hand, if the user already has dances, each dance’s

information is tracked so that if the user chooses a dance, the stage is loaded with the proper

number of dancers, keyframes, paths, and audio.

34

Dance Studio: A Choreography Simulation Tool Janet Lee

5 Evaluation

To evaluate the performance of Dance Studio, I revisit its original goal: Does it allow users to

more easily plan their formations for their dances? In this section, I detail how I first assess Dance

Studio on a technical basis, using Nielsen’s Heuristics, and next, how I conducted user evaluations

to understand how well Dance Studio is received by real people.

5.1 Technical Analysis

The technical expectation of Dance Studio is for the system to be bug-free and to effectively com-

municate to users how to use the application, offering an intuitive and smooth user experience. To

test my system throughout the building process, I often went through cognitive walkthroughs of

Dance Studio, iterating through as many possible use scenarios as I could imagine. Whenever I

added a new feature, I repeated the same walkthrough to ensure the update did not introduce any

new bugs.

Furthermore, before I conducted user studies, I used Jakob Nielsen’s heuristic evaluation as

a guideline to estimate how well my application would perform with real users. In Nielsen’s

approach, ten heuristics for user interface design encapsulate qualities of a system with quality

human computer interaction [20]. Table 2 details examples of how, based on my expert evaluation,

Dance Studio meets the needs of its users through each heuristic.

However, when I conducted my user studies, I discovered a gap between my analysis and actual

user behavior. Several features that I believed to be self-explanatory were not actually intuitive for

users. As a result, I iterated on Dance Studio and continued to refine my understanding of user

behavior.

5.2 User Evaluation

To evaluate how well users respond to Dance Studio, rather than collecting succinct feedback

from hundreds of users, I conducted long-form, qualitative evaluations with ten people. Given the

35

Dance Studio: A Choreography Simulation Tool Janet Lee

Stage of Heuristic Evaluation Implementation in Dance Studio

Visibility of system status
The user can always see the status of their dance, in-
dicating whether or not it is saved to the database.

Match between system and real
world

Vocabulary that is familiar to the user is used in every
aspect of the application, with plain terms allowing
them to save their work, play the routine, delete for-
mations, etc.

User control and freedom
System allows users to “undo” and “redo” their most
recent changes, to delete keyframes, and to alter the
speed of the music playback.

Consistency and standards

Consistent vocabulary is used to describe the same
ideas, and a standard color convention of green indi-
cating success and red indicating failure is used for the
dance’s saved status.

Error Prevention
Tooltips indicate each button’s functionality to prevent
button misuse, and autosaving ensures the user has the
most recent version of the dance available.

Recognition rather than recall

Users can view their keyframes by playing the dance
or going immediately to the time they are interested
in. They do not need to memorize any information
themselves, as everything they need is displayed on
the screen.

Flexibility/efficiency of use

Creating a basic dance (as in the User Task List, see
the Appendix, Part B) takes less than 30 seconds.
Both new and experienced users can efficiently cre-
ate dances according to their needs; the “Edit Paths”
option allows more experienced users to create more
refined routines.

Aesthetic and minimal design
The site is minimalistic and only contains necessary
features; the bright color scheme is pleasing to the
eye.

Helps users recognize, diag-
nose, and recover from errors

When the dance cannot be saved, the user sees an er-
ror message, which prompts them to press the “Save”
button to try again.

Help and documentation

A help button is always available for the user to see
how to use the system, and each icon has a tooltip
to explain its function (eg: “Play from beginning”,
“Undo”, “Redo”, etc.).

Table 2: Nielsen’s Heuristics as implemented in Dance Studio.

36

Dance Studio: A Choreography Simulation Tool Janet Lee

limitations of the scope of this project, and the importance for Dance Studio to be user friendly, I

greatly valued having more detailed qualitative feedback and the advantage of being able to watch

user behavior as it happens live. I selected my users by reaching out to a segment of the target user

demographic, my peers in the dance community at Princeton. Despite the small sample size, people

with a range of dance experience were represented in the test group, which included some people

completely unfamiliar to dance and others who have been choreographing for years. Additionally,

the users were equally split in using Mac and PC machines.

The evaluation itself consisted of completing a user task list to use Dance Studio to create

three dances of increasing complexity, and then to optionally make an original dance. The task list

prompts the user to follow a list of instructions to produce the dances, however, specific application

features are not specified, so the user must independently translate the broader instruction to Dance

Studio. For example, one instruction is to move the dancers to the front of the stage; the user

must determine how to move the dancers by clicking and dragging the meshes across the stage.

Observing users going through the task list revealed where users were confused about how to

implement a certain action due to poorly defined features. Additionally, by observing user behavior

in real time, I could see how, when confronted with a task they did not know how to complete,

people sometimes responded by misusing other features or performing other actions. The full task

list is available in the Appendix, Part B.

My pilot study was conducted with Professor Dondero individually. At the time, the application

user interface was not very user friendly; the user was unable to complete several tasks without my

verbal aid due to an unclear user interface. For example, the current time was not clearly identifi-

able, since its marker was a black line on a timeline with other black lines, so I updated the marker

to be red and thicker in width. In addition, several bugs were identified in this round of evalua-

tion, at which point, I ensured the system was bug-free before continuing with further evaluation.

Furthermore, I updated the task list to clarify confusing or overly ambiguous instructions.

After I iterated on the feedback suggested in the first round of evaluation, ten more users

evaluated the system using the updated task list. On average, when asked how likely they were

37

Dance Studio: A Choreography Simulation Tool Janet Lee

to use Dance Studio to choreograph their next dance, users gave a rating of 8/10. Their favorite

feature was the core functionality of the application; many users said it solved many of the issues

they faced when attempting to use pen and paper to keep track of formations. They enjoyed the

ease of moving dancers on stage, the generally intuitive nature of the interface, and the ability

to upload music and visualize it on the timeline. Another highly praised feature was the edit

paths functionality; all users agreed that the option to create custom paths took the application

to the next level, and it was “very satisfying to see the changes happen so quickly in real time”

(Yoon, 2020). Most users opted to create their own choreography because they naturally desired to

experiment more with the application and with possible formations, indicating that it encourages

user creativity. Overall, there was no noticeable difference in user behavior between experienced

dancers and novices.

As mentioned above, while generally intuitive, the system at the time of user testing did not

completely fulfill Nielsen’s Heuristics with actual users. The main constructive feedback relates

to buttons on the sidebar GUI not being clear. For example, users were confused about how to

make a new dance; in the version they evaluated, a user must click on their own name in the top

tab to access their dances and to create new routines. However, while this was intuitive to me, for

most users, this was not self-evident. As a result, I added a blue “Edit My Dances” button above

the aerial rendering of the screen. Additionally, the button to allow users to save their dance was

green, making it blend in too much with the background; to resolve this issue, I changed the button

to be white to stand out more clearly.

Additionally, in the main graphics interface, dancer names were hard to read because at the

time, the text sprites above each dancer had no black background, which I later added due to this

feedback. While dragging dancers was straightforward, some users also found it difficult to phys-

ically drag the “Edit paths” blocks due to a lack of responsiveness of the system. Furthermore,

several users reported they wished the stage had a grid to allow them to align dancers more accu-

rately; I added this grid in the next version of the app. A significant minority of Mac users faced

issues accidentally prompting the browser to go back to the previous page when they were scrolling

38

Dance Studio: A Choreography Simulation Tool Janet Lee

(a) Sidebar before user study [21]. (b) Sidebar after changes were made based
on user feedback [21].

Figure 17: A before and after of the sidebar user interface based on implementing user feedback.
The key differences are the new ”Help” button, the new “Edit My Dances” button, the recoloring
and repositioning of the “Save Dance” button, the removal of the “Add Dancer” button in favor of
allowing users to do so in the “Edit Dance” modal. The newer version also enables users to toggle
displaying a grid onstage.

39

Dance Studio: A Choreography Simulation Tool Janet Lee

through the timeline, before they had an opportunity to save their dance. Additionally, with PC

users and people with shorter screens, there were occasionally issues with the content of the side-

bar overflowing into the timeline; I resolved this issue by making the sidebar scrollable. While the

system allows users to use the spacebar to play and pause the dance, several users desired even

more keyboard shortcuts to speed up the workflow.

40

Dance Studio: A Choreography Simulation Tool Janet Lee

6 Limitations and Future Work

6.1 Known Limitations

Occasionally, the database is inconsistent between the local environment and Heroku’s PostgreSQL.

As a result, while the database is successful in reliably saving work on the local version of the ap-

plication, it occasionally times out and is unable to make GET or POST requests to the Heroku

PostgreSQL database. Originally, the system autosaves every time a dance is changed (updating a

keyframe, moving a dancer, editing a path, uploading music, changing the name, etc.). However,

since autosave was only successful approximately 80% of the time, I modified Dance Studio to

have a manual save button that prompts the user to click save as often as possible, and then to try

again if an error message is displayed. When testing this method with users, some people forgot to

save their work frequently, and all users generally preferred having an autosave as well. To com-

promise between these two methods and ensure that users have access to the most recent version

of their work, dances are autosaved, and there is also a save button to allow the user to manually

store their work if the autosave fails. This way, if the user is not able to save their work frequently,

a relatively recent version of their dance is still available due to autosave.

Additionally, sometimes the initial modal does not load due to a 401 server authorization error,

likely due to an inconsistency with Flask-Login and database authentication. As a result, the user

must click on the “Edit My Dances” button to access the modal.

The functionality of the “Undo/Redo” feature is inconsistent; it can be seemingly unresponsive,

then overly aggressive in undoing changes. While dancers may be added or modified, the ability

to delete dancers has yet to be implemented. When a new dancer is added, there occasionally is an

error in rendering the paths and position for the new dancer. While the limitations mentioned do

not inhibit the core functionality of the application, they are next highest in priority to resolve to

improve Dance Studio’s usability.

41

Dance Studio: A Choreography Simulation Tool Janet Lee

6.2 Future Work

In the future, I hope to focus on shareability and ease of use, since the main suggestions from users

revolved around these two principles. To upgrade Dance Studio from a single-user application to

become more collaborative, I hope to implement features such as the ability to export to a video,

a share feature that allows different users to view and edit the same dance within Dance Studio,

and a printer-friendly exporting option that displays the dance as images of each formation with

timestamps. Furthermore, to increase accessibility, Dance Studio can be further adapted for mobile

screens and other non-desktop devices. To improve upon the application’s ease of use, potential

future features include the abilities to move multiple dancers at a time by highlighting a section

of the stage, to copy and paste formations, to access a library of existing formations for the given

number of dancers, and to create copies of dances to encourage further experimentation.

In addition to adding the proposed features to increase accessibility and the application’s us-

ability, in the long term, I hope to add on to the core functionality of the application to reflect a

fuller dance performance experience. One option is to incorporate custom lighting options, which

is achievable using Three.js, on a separate timeline to allow users to experiment with lighting their

performance. This would also require the dancer meshes to appear more human-like to allow users

to better assess how their lighting looks on real people. Additionally, a further advancement is

to enable these humanoid meshes to have motion capabilities to simulate entire dance sequences

virtually, using previously defined dance moves or by allowing users to film themselves dancing

with technologies such as OpenPose, a system which uses computer vision to detect human body

keypoints in single images [18].

6.3 Future Applications

Dance Studio also has applications beyond just the dance community. The application’s core

functionality can be used to map out blocking for theatrical plays, musical theater productions, a

capella performances, cheerleading competitions, and ice skating shows. This blocking tends to

be more simplistic than in dance choreography, so little modification to the application is needed.

42

Dance Studio: A Choreography Simulation Tool Janet Lee

The movement of individuals on a surface is also necessarily mapped in sports plays; instead of

dancers, the main meshes can represent individual players, while the “Edit Paths” functionality in

particular can allow coaches to experiment with and visualize movement in football, basketball,

soccer, and other sports. Players on opposing teams can be differentiated by their colors, and each

“dance” can represent a different play. One modification is to include a ball and potentially a

basket, goal, or end zone.

43

Dance Studio: A Choreography Simulation Tool Janet Lee

7 Conclusion

In sum, Dance Studio achieves its goal of simplifying the choreography process by allowing users

to easily visualize and plan their dance formations. Based on feedback from users, Dance Stu-

dio offers aspiring choreographers a simple solution to clearly block their dances and anticipate

and avoid collisions between dancers. While the user experience can still be improved, users are

pleased with the application and are extremely likely to use it in the future. Dance Studio empow-

ers all users, regardless of their experience, to succeed in transforming their creative vision into a

reality.

44

Dance Studio: A Choreography Simulation Tool Janet Lee

References

[1] [Online]. Available: https://colorlib.com/etc/lf/Login v5/index.html

[2] [Online]. Available: https://threejs.org/examples/webgl geometry spline editor.html

[3] “Computer graphics: 15-462.” [Online]. Available: http://www.cs.cmu.edu/∼jkh/462 s07/

[4] “Creating a new formation?” [Online]. Available: http://danceapp.us/

[5] “How to use imovie to edit videos and make a movie.” [Online]. Available:

https://filmora.wondershare.com/imovie/how-to-use-imovie.html

[6] “imovie.” [Online]. Available: https://www.apple.com/imovie/

[7] “Interface overview.” [Online]. Available: stagekeep-docs.helpscoutdocs.com/article/8-inter

face-overview

[8] “Login.” [Online]. Available: https://flask-login.readthedocs.io/en/latest/

[9] “Parameterization of catmull-rom curves - cem yuksel.” [Online]. Available: http:

//www.cemyuksel.com/research/catmullrom param/

[10] “Postgres - sql database service.” [Online]. Available: https://www.heroku.com/postgres

[11] “The python sql toolkit and object relational mapper.” [Online]. Available: https:

//www.sqlalchemy.org/

[12] “Regions plugin.” [Online]. Available: https://wavesurfer-js.org/plugins/regions.html

[13] “Sahil diwan - local diner.” [Online]. Available: http://blog.sahildiwan.com/posts/flask-and

-postgresql-app-deployed-on-heroku/

[14] “three.jsr116.” [Online]. Available: https://threejs.org/

[15] “wavesurfer.js.” [Online]. Available: https://wavesurfer-js.org/

45

Dance Studio: A Choreography Simulation Tool Janet Lee

[16] “Webgl - opengl es for the web,” Jul 2011. [Online]. Available: https://www.khronos.org/we

bgl/

[17] Andrey, “Three.js – drag and drop objects,” Jun 2015. [Online]. Available: https:

//www.script-tutorials.com/webgl-with-three-js-lesson-10/

[18] CMU-Perceptual-Computing-Lab, “Cmu-perceptual-computing-lab/openpose,” Apr 2020.

[Online]. Available: https://github.com/CMU-Perceptual-Computing-Lab/openpose

[19] B. Foundation, “Home of the blender project - free and open 3d creation software.” [Online].

Available: https://www.blender.org/

[20] W. L. in Research-Based User Experience, “10 heuristics for user interface design: Article

by jakob nielsen.” [Online]. Available: https://www.nngroup.com/articles/ten-usability-heuri

stics/

[21] J. Lee, “Dance studio.” [Online]. Available: http://dancetigers.herokuapp.com/

[22] J. Raida, “Software.” [Online]. Available: http://www.johannes-raida.de/tutorials/three.js/tut

orial13/tutorial13.htm

[23] StageKeep, “The formation app for every performer.” [Online]. Available: https:

//stagekeep.com/

46

Dance Studio: A Choreography Simulation Tool Janet Lee

A Database Schema

A.1 User Table

Key Description

id
The primary key for this table. The id is the user’s
Facebook or Google account unique user id, depend-
ing on how they logged into the application.

name The user’s first and last name.

email The user’s email address.

profile pic The url to the user’s profile picture.

A.2 Dance Table

Key Description

id The unique dance id, the primary key for this table.

user id
The user’s id (the “id” field in the User table) for the
corresponding user to whom this dance belongs.

user email The user’s email address.

dance name The name of the dance, as specified by the user.

dancers
The dancer objects for the dance, stored as a string.
See the dancer class below.

keyframes
The array of keyframe times for the dance, stored as a
string.

number of keyframes The number of keyframes, or formations, in the dance.

audioFileName The local file name for the dance’s audio.

audioURL The URL for the audio file for the dance.

47

Dance Studio: A Choreography Simulation Tool Janet Lee

The dancer object is primarily dealt with on the client side via Javascript in the file Dancer.js.

The object has the following attributes:

Key Description

name The name of the dancer, as specified by the user.

mesh
The mesh object that is displayed onstage in the
Three.js renderer.

keyframePositions
An array of objects that specify the dancer’s position
at each given keyframe time.

The keyframePositions object is comprised of the following keys:

Key Description

beginning The absolute starting time of the keyframe in seconds.

ending The absolute ending time of the keyframe in seconds.

position The dancer mesh’s position onstage for the keyframe.

curve

A CatmullRomCurve3 object representing the
curve corresponding to the dancer’s path from the
current keyframe to the next position. The final
keyframe’s curve is null.

splineHelperObjects
An array of 5 draggable, physical meshes that are
boxes representing the control points for the Catmull-
Rom curve.

positions
An array of 5 positions that indicate where each of the
spline helper objects are onstage.

48

Dance Studio: A Choreography Simulation Tool Janet Lee

B User Task List

Welcome! Thank you for helping me in my senior thesis. Please follow the instructions to the best

of your ability. The application is hosted online at https://dancetigers.herokuapp.com/.

Once you get to the landing page, choose to sign in with Google.

B.1 Basic Use

To introduce you to the basic features of the app, we will make a very simple dance.

1. Make a dance called “Dance 1” with two dancers in it. Name the dancers “Blue” and “Red”

and color them according to their names.

2. Make the two dancers stand in the back right corner (from the audience’s perspective) for

the first position.

3. Create a new position starting at time 15 seconds, where both dancers are standing next to

each other in the front.

4. Play the dance from the beginning to watch what you just created. Once you have seen both

positions, stop the playback. To increase the speed of playback if it is too slow, you can

adjust the playback speed up to 5x if you like.

5. Extend the initial position so the dancers are stationary from 0 to 10 seconds.

6. Play the dance again.

7. Save your changes.

B.2 Intermediate Use

Now we will make a more complicated dance.

49

Dance Studio: A Choreography Simulation Tool Janet Lee

1. Make a new dance called “Dance 2” with 3 people in it (names and colors can be whatever

you like).

2. Once the dance has loaded, rename the dance “Second Dance”.

3. Create three positions - the first where the dancers are in a horizontal line in the back of the

stage (lasting from 00:00 to 00:03), the second where the dancers are in a horizontal line in

the front of the stage (lasting from 00:06 to 00:10), and the third where the dancers are in a

vertical line in the middle of the stage (lasting from 00:14 to 00:16). Play the dance to make

sure it looks right.

4. Hit save until the changes are saved. Refresh the page and open up “Dance 2” again to make

sure your work was saved.

5. Delete the second keyframe (originally from 00:06 to 00:10). Play the updated dance.

6. Add a new keyframe in its place where the dancers are all spread out over the stage - two in

the front corners close to the audience, and one in the back of the stage in the center. Make

this keyframe last from 00:06 to 00:10. Play the dance.

7. Move the second keyframe (originally from 00:06 to 00:10) to the new time 00:20. Play the

dance to see the changes were made.

8. Save your changes.

B.3 Advanced Use

This list of tasks will introduce you to the more complex features of Dance Studio.

1. Make a new dance called “Dance 3” with 3 dancers.

2. Upload an .mp3 file from your computer that is at least 30 seconds long.

50

Dance Studio: A Choreography Simulation Tool Janet Lee

3. Create three positions - the first where the dancers are in a horizontal line in the back of the

stage (lasting from 00:00 to 00:03), the second where the dancers are in a horizontal line in

the front of the stage (lasting from 00:06 to 00:10), and the third where the dancers are in a

horizontal line in the middle of the stage, where the order of the dancers from left to right is

reversed (lasting from 00:14 to 00:16). Play the dance to make sure it looks right.

4. Go to a time in between the first two positions, and check the “Edit Paths” box to edit the

dancer’s paths to be more rounded.

5. Edit the paths between the second and third positions to avoid collisions between dancers.

6. Play back the dance to check your moves.

7. Move the second keyframe (originally from 00:06 to 00:10) to the new time 00:20. Play the

dance to see the changes were made.

8. Save your changes.

B.4 Advanced Use (Optional)

Add one of your own choreographed dances to Dance Studio, or experiment with creating a new

dance entirely.

51

