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Abstract

We define a close variant of line range searching over the reals and prove that its
arithmetic complexity is ©(n log n) if field operations are allowed and ©(n?/2) if only
additions are. This provides the first nontrivial separation between the monotone
and nonmonotone complexity of a range searching problem. The result puts into
question the widely held belief that range searching for nonisothetic shapes typically
requires Q(n'*°) arithmetic operations, for some constant ¢ > 0.

1 Introduction

Conventional wisdom holds that addition is the only arithmetic operation needed for
range searching, and that allowing subtraction or multiplication does not help (besides
perhaps polylog speedups). Consider line range searching, for example: given n points
weighted with real values and n lines in the plane, compute the sum of the weights of the
points within each line. This can be done in O(n*/?) time using additions only [12]." If
other field operations are disallowed (the monotone model), this is essentially optimal,
as evidenced by the nearly matching lower bound of Q(n*/3) established in [5]. Although
it is less than clear why subtractions or other field operations should be useful for adding
weights, the best lower bound in the nonmonotone model is only Q(nlogn) [6]. Our
persistent inability to break below O(n*/3) for line range searching or, more generally,
to achieve n't°() for any typical (nonisothetic) range searching problem [1, 13] has
led to the conjecture that it is impossible to do so. Thus, it would appear that the
current lower bound technology for the nonmonotone model, which is based on spectral
arguments [4, 6, 7] that are inherently unable to produce bounds higher than Q(n logn),
is the weak link of the theory.

The results of this paper should lead us to reconsider this belief. We show that
allowing subtraction, or more generally multiplication by a constant, adds more power
than we might have anticipated. Briefly, we show that if we allow the line to bounce
against the walls like a billiard ball, then the problem can be solved in O(nlogn) time
in the nonmonotone model (for infinitely many values of n) and O(n®?) time in the
monotone case. Both bounds are tight in their respective models. To our knowledge,
this is the first example of a nontrivial separation result between the monotone and
nonmonotone complexity of a “natural” geometric problem.
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' The notation 5(f(n)) means = O(f(n)log® n), for some constant c.



The problem we consider is called Bouncing-Lines: Viewing a square grid of n
weighted points as a pool table, we define a query as the trajectory of a ball shot
from any point in an arbitrary direction. The ball bounces off the walls and keeps going
forever; the sum of the weights of the points that it encounters along the way constitutes
the answer to the query. An instance of Bouncing-Lines consists of n reals (the weights)
and n queries: the output is the set of n answers.

Without the bouncing, the best algorithm known to date runs in time close to
O(n4/ 3) time, and this complexity is optimal in the monotone model. What is it about
bouncing that makes the complexity drop to O(nlogn)? Of course, the complexity
of line range searching without bouncing might be O(nlogn). If, by chance, we could
extend the techniques of this paper to, say, triangle or circular range searching, then
it might not be inconceivable that the arithmetic complexity of every range searching
problem with finite VC dimension is O(n). This would shatter much of our current
understanding in this area. If this is not true, at the very least the results of this paper
show that improving the current lower bounds for the nonmonotone model (all of which
are based on the spectral lemma or its variant, the trace lemma [4, 6, 7]) is likely to be
very challenging.

Our lower bounds also apply to a form of line range searching where lines are con-
sidered modulo some integer. While this can be construed as operating on a torus, the
problem is not nearly as natural geometrically as Bouncing-Lines, which is why we pre-
fer to center our discussion on the latter problem, even though it involves slightly more
complicated arguments.

Theorem 1.1 For an infinite number of values n, the complezrity of Bouncing-Lines is
O(nlogn) time in the nonmonotone model and ©(n?/?) time in the monotone model.

Note that, by definition, n is always of the form (I + 1)2, where [ is the side length
of the square grid. The theorem holds for any prime /. The upper bounds are more
general, however. The O(n®/?) running time is that of the naive algorithm and hence
makes no assumption on [. We give a general algorithm for the nonmonotone model
which works for any value of [ and runs in time O(d(1)¢ nlogn), where d(l) is the number
of divisors of [ and ¢ is a positive constant. This implies an upper bound of O(nlogn)
for any side length [ that is the product of a constant number of primes. It is known [10]
that d(l) < 2'°8!/108log! for all [ large enough, and d(I) < logl for almost all /; in other
words, the number of integers m <[ for which d(m) > logm is o(l).

Corollary 1.2 Bouncing-Lines can be solved in (i) O(nlogn) time for an infinite num-
ber of side lengths; (ii) O(n) for almost all side lengths; and (i) n'+°Y) for all side
lengths.

Notation: Z,, denotes the ring of integers modulo n and (m,n) the greatest common
divisor of m and n. Euler’s totient function, ¢(n), refers to the number of integers
1 < k < m such that (k,n) = 1. These integers form a multiplicative subgroup of Z,,
which is denoted by U(Z,) or simply by U when n is understood. We use the standard
notation d(n) and w(n) for the number of divisors of n (including 1 and n) and the
number of distinct prime factors of n, respectively. (The notation w(n) should not be
mistaken for its common meaning in computer science.) All number-theoretical facts
used in this article can be found in Hardy and Wright’s classic text [10]. All logarithms
are to the base 2.



2 Bouncing-Line Range Searching

The input consists of the grid of n = (I + 1)? points with integer coordinates in the
square [0,1]2. Each grid point p is associated with a real variable w(p), called its weight.
A query q = (p,?) is a ray shot from p in direction ¥, where p is any point in the square
[0,1)2 (not necessarily a grid point). The ray is assumed to bounce against the sides of the
square according to the standard reflection law. By convention, if the ray hits a corner,
we assume that it bounces back along the same ray but in the opposite direction. The
answer to the query ¢ is the sum of the weights of the grid points hit by the (bouncing)
ray. Note that a point hit twice or more is counted only once. So, although a query
may have infinitely many turns its answer is always finite. Bouncing-Lines is the off-line
version of this range searching problem: the input consists of n weights and n queries
and the output returns the n corresponding sums.

An equivalent formulation is to compute the linear map Aw, where w € R™ is the
column vector of weights and A = (4;;) is the incidence matrix of the underlying set
system: A;; = 1 if query ¢ passes through point j; and A;; = 0 otherwise. To compute
the matrix A can be done easily in polynomial time under any standard representation
of points and queries, but this is not the point of interest. The focus of our attention is
the multiplication of A and w, so we might as well assume that A is already available.
For upper bound purposes, we require an algorithm that works on a standard RAM with
infinite precision real arithmetic. To prove lower bounds, we limit ourselves to counting
the number of arithmetic operations. We view the computation as that of a circuit,
where each gate takes two numbers u, v as input and outputs au + Sv, where o, 8 are
constants associated with the gate (ie, numbers independent of the weight vector w).
In the monotone model, the only constants allowed are o, 8 = 1. In the nonmonotone
version, we relax this assumption and allow a and 8 to be any complex numbers with
bounded moduli.

Figure 1: The bouncing line passes through 19 points.

3 An Overview of the Algorithm

The basic idea is to define an appropriate duality between points and queries (ie, an
incidence-preserving bijection between points and ball trajectories), and endow the
points and, by duality, the queries with an abelian group structure. Let p* denote
the dual query of point p. A query g maps back to the point ¢*, so that (p*)* = p. We



define a multiplicative abelian group (G, ®) over the points, so that given p and p', the
point p ® p' is another grid point. By isomorphism, we define the dual group (G*,®)
over the queries: the product of two queries ¢1 ® g2 is defined as (¢f ® ¢3)*. Given a
point p and a query ¢, define the characteristic function

xm®={

The group and the duality must be chosen so as to satisfy the following identity: For
any points p,r and query gq,

1 ifpeq,
0 else.

x(p,q) =x(per ' q®r*). (1)

®r*

/—\q

p@r‘l

Figure 2: Group, duality, and incidence.

If w(p) is the weight associated with point p, then for each query ¢ we must compute

W(g) =Y wp)x(p,q) =Y wp)x(1,q®p*) =>_ ulp)g(¢* ®p~")
p p p

where 1 denotes the identity element of G, u is the function p — w(p~!), and g is the
function p — x(1,p*). It follows that

Wi(q) = (uxg)(q*),

where the convolution *x takes place over the group G. Using the discrete Fourier trans-
form f — f over G [9], we can write

W=p-g,

which means that we can compute W (q) via three Fourier transform computations.
(Note the slight abuse of notation in viewing W as a function of ¢*.) There exists a Fast
Fourier Transform over G* which allows us to compute the map f — f in O(|G*|log |G*|)
time. We must mention here that the groups in question are not cyclic and that the
DFT (not to mention the corresponding FFT) is very different from the sort typically
encountered in integer multiplication or in engineering applications; nor is it related to
the modular Fourier transform.

Our challenge, therefore, is to define a group G and an appropriate duality which
together satisfy (1). Unfortunately, we are not able to do that. The best we can do is
partition the set of pairs (points, queries) into subsets (P;, Q;) with respect to which
condition (1) holds for some group G;. Of course, the complexity depends now on the
number of such subsets, which naturally we want to keep as small as possible.



4 Preliminaries

To give an algebraic characterization of queries, we consider the group generated by
horizontal and vertical reflections that has [0,1]? as its fundamental domain. This pro-
vides a single cover of R? that allows us to view any query ¢ as a straightline ray
in the plane. Any row of A with a single nonzero entry can be handled separately,
so we can assume that every query ¢ passes through at least two grid points. This
allows us to express its supporting line 4, as: vy(X — py) — v.(Y — py) = 0, where
Dz, Py, Vg, Uy are integers with (vg,vy) = 1. Any nontrivial element in the group of
reflections is of order two, so an equivalent formulation can be given over Z,,, where
m = 2l: vy(X — pg) —v,(Y —py) = 0 (mod m). For convenience, we state again the
basic relations between grid size, number of points, and modulus:

n=(+1)? and m = 2. (2)

Even though v, and v, are now reduced modulo m, we can still assume that they
are relatively prime. Obviously, their gcd g, if nontrivial, cannot have a common factor
with m, and therefore it has an inverse modulo m and so we can use the coefficients
vz /g and vy /g instead. Note that the queries for which v, = 0 or v, = 0 modulo m can
be handled separately in O(n) time, so we restrict ourselves to queries of the following

type:
{ vy(X = py) ~ va(Y —p,) =0 (mod m) (3)

(vz,vy) =15 0 < wg,vy <M.

We verify that any equation of type (3) corresponds to the trajectory of a bouncing
ball. To see why, because (vg,vy) = 1, ivy — jvy = 1 for some i, j € Z, and so any (X,Y)
that satisfies (3), ie, vy (X — py) — vz(Y — py) = km, for some k, maps injectively to
the point (X + jkm,Y + ikm), which is in the same residue class and lies on the real
line vy (X — py) — vz(Y — py) = 0. Note that this might not be true if v, and v, have a
common factor: for example, the point (2,0) on the line 2X +2Y = 0 (mod 4) is not in
the residue class of any point on the corresponding real line.

Note that there are enough distinct lines to make the problem interesting. For
example, set v; = 1 and p, = 0, and observe that (3) becomes Y = vy, X + p, (mod m),
which gives us (n) distinct lines.

m

o 2 | m=2l

Figure 3: A bouncing line and its line 2X —Y =4 (mod 16).



Consider a line of type (3) and rewrite it as v, X +v,Y = vo (mod m), with (v, vy) =
1 and 0 < vz, vy < m (note that we changed v, into —v, for notational convenience).
An even better characterization of the line can be obtained as follows: Let g be the
largest divisor of m that is relatively prime to vz, and let f = m/g. Note that f may
not be equal to (v, m). From the definition of g and the fact that (v,,v,) = 1, it follows
that (vg,g) = (vy, f) = 1. Since (f,g) = 1, we can use the Chinese remainder theorem
(CRT) to derive an equivalent formulation of the line:

X+sz:fO (mOdf) (4)
g X +Y =gy (modg).

If f =1 (resp. f = m) then, of course, the first (resp. second) equation is trivial. Note
that (X,Y’) takes on f values modulo f and g values modulo g. By the CRT, it follows
that any line has exactly fg = m points.

Lemma 4.1 Any line of type (3) contains exactly m points.

One final word about the modeling of the problem in terms of modular arithmetic.
Figure 1 indicates that the ball passes through 19 points, but / = 10 and so we should
expect 20 of them. Where is the missing point? The problem is that (8,5) is a multiple
point. By convention, the weight should be counted only once but if we solve the
problem modulo m it will be counted twice. We repair the damage by identifying all
the multiplicities (ie, pairs of point-line incidences for (3) whose images within [0, []?
coincide), and subtracting each weight accordingly.

Lemma 4.2 The number of multiplicities is O(2°™m?2d(m)).
Proof: See appendix. O

To find the multiple points is something we need to do when setting up the matrix A.
It requires standard linear algebra. Again, note that this does not concern the circuit
complexity of the problem itself, so we may skip the details. What we have shown
is that, with the help of O(2“™m?2d(m)) subtractions performed in a postprocessing
step to correct multiple weight counts, Bouncing-Lines can be reduced to the following
problem: Given a column vector w € Rmz, compute Aw, where A is the m?-by-m?
incidence matrix of a set system defined by points and lines of type (3), where 4;; =1
if line 4 contains point j and 0 otherwise.

5 A Fast Algorithm

To define a group structure on points and queries, we single out the points with appro-
priate number-theoretic properties. We say that a point (z,y) is polar if both z and y
belong to the multiplicative group U of units of Z,,. A line is said to be polar if it can
be expressed by an equation of the form aX + bY = 2/ (mod m), where a,b € U and
0 < j < e1, with 2°! being the largest power of two dividing m. When j is specified,
we say that the line is j-polar: j is called the polarization type. Whereas the notion of
polarity is essential to the identification of group structures among points and lines, the
polarization type is introduced purely for technical reasons.



Let P be the set of grid points [0, m — 1]2NZ? and let £ be the set of all distinct lines
with coefficients modulo m; write % = P x L. We say that a subset of X is polarized if
it is a Cartesian product that can be affinely brought into polar form, ie,

(i) the subset is of the form P x L, where P C P and L C £; and

(ii) there exist a nonsingular affine transformation f and an integer j such that f(p)
is polar for each p € P and f(¥) is j-polar for each £ € L.

Lemma 5.1 Let 2%! be the largest power of two dividing m. The set 3 can be partitioned
into at most (e + 1)0“’("‘) polarized sets, for some constant ¢ > 0.

Proof: For the time being, assume that m is a prime power ¢¢, where ¢ > 2. In the
expression of the line vy X + v,Y = vy (mod m) provided by (4), it is immediate that
either f or g is equal to m. Without loss of generality, assume that f = m. The equation
of the line becomes

X + fzY = fo (mod m). (5)

Consider the affine transformation f; ;. (p), where p = (z,y) € Z2, and

) =y+u (modm)
fs’t’“(p)_{y’:sy+m+t (mod m) . (6)

The transformation is nonsingular and so the line can be expressed equivalently as
fs,t,u(g) : (fw - S)X, +Y' = fo+ (fw - s)u-l— t.

For any point /line pair (p, £), where p = (z,y) lies on a line £ of type (5), there exist some
s,u € {0,1} and ¢ € {0,1,2} such that both f,;,(p) and f,+,(¢) are polar. To see why,
consider the following assignments of s,¢,u: If y = 0 (mod g), then u = 1, else u = 0.
If f =0 (mod ¢q), then s =1, else s = 0. For any fixed z, v, fo, fz, S, u, each one of the
equations (in t) sy+z+t = 0 (mod ¢) and fo+ (fz —s)u+t = 0 (mod g) has exactly one
solution. Because ¢ > 2, this implies that neither equation is satisfied for at least one
value of t € {0,1,2}. The point f,;,(p) is polar and the line f;;,(¢) has for equation,
aX'+Y" = b (mod m), where a,b € U. Multiplying it by the inverse of b modulo
m shows that the line is O-polar. This proves our claim that the 12 transformations
considered are sufficient to bring every pair (p,£) into polar form. Obviously, the subset
Ystu of X that is brought into polar form by a given f;;, is a rectangle, ie, a set of
the form P x L C X. This shows that ¥ can be expressed as a (nondisjoint) union of at
most 12 polarized sets X ¢ 4.

We turn the cover of ¥ into a partition in the obvious way: we mark every point
of P (resp. line of £) with a 12-bit vector indicating which of the 12 values of (s,t,u)
make the point (resp. line) polar (resp. 0-polar). This partitions P and £ into subsets:
for every pair of them, P C P, L C L, whose bit vectors have a common intersection,
we form the product P x L. These products are obviously disjoint; by the previous
argument, they in fact partition all of 3. We can repeat the same argument for the
case ¢ = m. To summarize, we have shown that if m is a prime power ¢° for ¢ > 2,
then ¥ can be partitioned into no more than ¢ < 2(2'2)? polarized sets P; x L;, each
one associated with a nonsingular affine transformation f;. (No effort has been made to
optimize the constant c.)



The case g = 2, ie, m = 2¢, is the reason why we added a 2/ term to the definition
of a polar line. The previous argument breaks down, as no single value of ¢ can always
ensure that both sy + = + ¢ and fo + (f — s)u + ¢ are odd. However, we can always
enforce, say, the first condition. The difference in outcome is that the partition of X
enjoys slightly weaker properties. A line £ € L; is such that f;(£) has an equation of the
form aX' +Y’ = b (mod m), where a is odd but b < m is arbitrary. If b has an odd
factor, we can always multiply the equation by its inverse to put it in polar form. Note
that the case b = 0 corresponds to a polarization type equal to e.

We now consider the general case where m is an arbitrary positive integer. Let
Hle p;* be the prime factor decomposition of m. Note that m is always even, so p; = 2.
The ring homomorphism of the CRT allows us to classify point-line incidences one
modulus at a time. Points and lines are incident if and only if they are so modulo each
pi'. Regarding polarity, the same of is true of points: p = (z,y) is polar if and only if
the point (z mod p{’, y mod p;*) is polar for each 7. The case of lines requires a brief
discussion. A line aX + bY = d (mod m) is polar if and only if it is polar modulo each
2

One direction is easy: take a polar line aX + bY = 2/ (mod m), with a,b € U
and 0 < j < e;. It is obviously j-polar modulo p$!. For any odd p;, observe that 27 is
relatively prime to p5*, and therefore has an inverse modulo p{*. Thus the line’s equation
can be rewritten as a’X +b'Y = 1 (mod p;*), with o', relatively prime to p;’, showing
that it is O-polar.

Conversely, suppose that the line aX + bY = d (mod m) is j-polar modulo pf* and
0-polar modulo p;’, for any ¢ > 1. No p; can divide a, and therefore a € U; same with
b. No odd p; divides d; therefore d = 27 + a2°1 = 273, where B = a2 7 + 1. If j < ey,
then f is odd. This implies that 8 € U; therefore, after dividing by 3, the line can be
expressed as a’X + b'Y = 2/ (mod m), with a’,b’ € U, thus showing that it is j-polar.
If j = er, then d = 2¢12%, for § > 0 and odd + relatively prime to m/p$'. Let h < m
satify

h=1 (mod p{")
h2°y =1 (mod m/p$').

By the CRT, h exists and is unique. Obviously h € U; so multiplying by A gives the
equivalent line equation, a’X + 'Y = 2¢1h2%y (mod m), with o/, € U, ie,

dX +VY =21+ jm/pf') =2°*  (mod m),

which again proves that the line is j-polar. For illustration, here is an example with
m = 20: The line X +Y =4 (mod 4) is 2-polar modulo 4, while X +Y =1 (mod 5) is
0-polar modulo 5. This gives us the line X+Y = 16 (mod 20), which after multiplication
by 9 becomes 9X +9Y = 4 (mod 20), which indeed proves that the line is 2-polar modulo
m.

Thus, we can generalize the previous result by simply taking the product of the
partitions defined over the moduli. Taken modulo p;?, ¥ is partitioned into no more
than ¢ polarized sets Pf X Lf (polarization defined modulo p{), each one associated
with a nonsingular affine transformation fli. By the CRT, this induces a partition of %
modulo m into at most ¢ polarized sets of the form Hi?:l Pl’Z X L}z By this notation we
mean to include any pair (p, £), where p and £ belong respectively to sz and LZ modulo

pi'. For each subset Hi?:l Pl’l X Li” polarization is defined modulo m. Its associated



transformation f;, ;. = ( flll, el fl’z) is defined by specifying its reduction flii modulo
DY, i€, fis,.ots(p) = (z,y) where fi (p) = (x,y) (mod pc%) for each 1 < i < k. Similarly,
fir,.1p (£) is the unique line modulo m whose coefficients modulo pj* specify the line

The partition of X satisfies the lemma, except for the condition that the polarization
of the lines within each subset be defined with respect to a unique type j. Each P! x L]
can be partitioned into Pl1 X Lll’j, for 7 =0,1,...,e1, to distinguish among all possible
polarization types. This adds a factor of e; + 1 to the size of the partition. Noting that
k = w(m), the proof is complete. O

Given an input set of m? points and m? lines, let {P; x L;} be the partition of the set
of line/point pairs (£, p) induced by Lemma 5.1. Recall that the problem is equivalent
to computing Aw, where w is the column vector of weights and A is the m2-by-m?
incidence matrix: A;; = 1 if line ¢ contains point j and 0 otherwise. Let B; be the m2-
by-m? incidence matrix corresponding to P; x L;. Obviously, A = 3", B, so it suffices to
explain how to compute B;z. Let f; be the nonsingular affine transformation associated
with P; X L; and let j; be its polarization type. By definition, for any p € P; and £ € L;,
both coordinates of f;(p) lie in U and the line f;(¢) is expressed by the equation

aX +bY =2 (mod m), (7)

where a,b € U and 0 < j; < e;, with 2% being the largest power of two dividing m.
We endow U? with an abelian multiplicative group structure by looking at it as the
direct product U ® U. In other words, if p = (z,y) and p' = (z’,9') belong to U @ U,
then p ® p' = (z2’,yy') € U® U. For a fixed polarization type, here j;, we define the
duality
{ p=(z,y) — p*:mX+yY:2ji (mod m) (8)
£:aX +bY =27 (modm) — £ =(a,b).

Note that lines are treated here as formal expressions, not as subsets of Z,,,. For example,
the two lines X +Y = 2 (mod 12) and 7X + 7Y = 2 (mod 12) are considered distinct,
even though they contain the same set of points. Next, we express the map B; as a
convolution. The sum of weights along line £ is given by

Wi0) = > wilp)xe(p),

peURU

where w;(p) is the weight of point p if it belongs to P; and 0 otherwise, and x,(p) is 1 if
p € £ and 0 otherwise. If we define g(p) to be 1 if £ +y = 2/ (mod m) and 0 otherwise,
for p = (z,y), then x¢(p) = g(£* ® p). Writing y;(p) = wi(p~") for any p € U @ U, we
find that
i) = Y pilp)g(f @p7h).
pelRU

This shows that W; is the convolution u; *x g. Harmonic analysis over finite groups
gives us the tools to diagonalize this convolution. By the structure theorem for finite
abelian groups [2], U ® U is isomorphic to a direct product of cyclic groups Uy, ..., U,
of order dy < --- < d,, with dy|da|---|d;. To factor U ® U in this way is easily done
in polynomial time. (Again, this takes place in preprocessing, so this overhead is not
added to the cost of the range searching problem.) Obviously, it suffices to factor U.



To do that, we identify an element of highest order, factor out the corresponding cyclic
group and then repeat this process with respect to the quotient group. This factors U
into cyclic groups. It is easy to see that picking only elements of highest order ensures
that the orders of the factors form a descending chain of divisors.

The Fourier transform of a function f : x € U @ U — R is defined by specifying
the group of characters for U ® U. The factorization of U ® U allows us to identify
z € UQU with a vector (z1,...,2,), where z; € Z,4,, with the group operation achieved
by coordinate-wise addition. The |U|? characters are:

t=(t1,...,t;) eURU s e rilim/ditttrar/dr)

We define the Fourier transform of f and its inverse:

Z f(m)e—Qm' Z;'-=1 t;x; /d; and |U| Z f 27Ti Z;zl tjzj/dj.

TEURU teUgUu
The convolution formula gives
Wi(t) = fi(t) g(2)-

So, we can derive W; by computing two Fourier transforms and one inverse. The classical
FFT algorithm has been generalized to arbitrary abelian groups [3, 8, 11], and it is
possible to compute it in O(N log N) time, where N is the order of the group. This
shows that B;z can be computed in O(m? logm) time; therefore, by Lemma 5.1, Az can
be derived in time O(elc“’(m)m2 logm). Counting the preprocessing of Lemma 4.2, the
time for solving an instance of Bouncing-Lines is O(e1c*™m?logm + 2¢(Mm2d(m)).
Obviously, e;c®(™) < d(m)'t18¢; therefore, by (2),

Theorem 5.2 Bouncing-Lines can be solved in O(d()’ nlogn) time, for some constant
b>0, where n = (I +1)2,

If only additions are allowed, then the naive algorithm, which involves adding the
weights one at a time, has a complexity of O(n3/ 2). This establishes the upper bounds
of Theorem 1.1 and Corollary 1.2.

6 Lower Bounds

It remains for us to prove the two lower bounds of Theorems 1.1. We begin with the
Q(n%/?) bound for the monotone case. The idea is to build a problem instance whose
incidence matrix does not have large rectangles of ones. The lower bound follows from
a result of [5].

Assume that [ is prime. We take as input all the lines of the form Y = a X + b, for
all 0 < a,b < 1/2, and all points of [0,1]2 N Z2. By (2) this produces a set system with
Q(n) queries and Q(n) points. Given two distinct queries Y = aX + b (mod m) and
Y = d’ X + ¥ (mod m), how many points can they share? Accounting for reflections,
any intersection point (z,y) satisfies:

Y=aX+b (modm)
sY =t X +b (modm),

for some s,t € {—1,1}. This implies that (a — sta’)X = sb/ — b (mod m). Looking at
that equation modulo [/, we distinguish between two cases:
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e a # sta' (mod [): then X is uniquely specified modulo /, and by the CRT has no
more than two solutions modulo m. This implies at most two intersection points.

e a = sta’ (mod [): because 0 < a,a’ < [/2, it must be the case that st = 1 and
a = a'. Note that the case s =t = —1 is impossible because it would imply that
b+ b =0 (mod l), with 0 < b,b' < 1/2. Therefore, s =t =1 and hence b = b'.
This contradicts the assumption that the queries are distinct.

If the two queries are distinct, then they share at most 2|{ (s,¢) }| = 8 points. Now,
switching over to the set system formed by the bouncing lines, the incidence matrix
A has Q(m?) rows and columns, and its number of ones is Q(m?). Furthermore, it
contains no 2-by-9 rectangles of ones. By [5, 7], it follows that the monotone complexity
of computing Az is Q(m?) = Q(n3/?).

To deal with the nonmonotone case where all field operations are allowed, we use
the trace lemma [6, 7]. For completeness, we state it below:

Lemma 6.1 [6] The circuit complexity of x — Az, where A is an N-by-N incidence

matriz is
Q. (N log(tr M/N — ey/tr M?/N)),

where M = AT A and € > 0 is an arbitrarily small constant.

The proof of the trace lemma was proven in a circuit model allowing only additions
and subtractions. The same proof, however, can easily accommodate gates of the form
(u,v) € C — au + Bv, where @ and f are complex numbers with bounded moduli.
In this way, the model allows the use of Fourier transforms. In the problem at hand,
we have N = O(m?) and tr M = ©(m3). Every pair of distinct rows in A gives rise
to at most 82 two-by-two submatrices of ones; on the other hand, each row and each
column has O(l) ones. The trace of M? is the number of rectangles of ones (ie, j-by-k
submatrices of ones, with 1 < j,k < 2); it follows that tr M? = O(m*). By Lemma 6.1,
the complexity of computing Az is at least proportional to m? log((c — ec¢’)m), for some
constants ¢, ¢’ > 0. Setting ¢ small enough completes the proof of the lower bounds of
Theorem 1.1.

7 Conclusion

A similar separation result can be obtained for line range searching on a torus and
higher-dimensional variants of Bouncing-Lines. To determine whether such a separa-
tion between monotone and nonmonotone complexity can be found for more standard
range searching, eg, orthogonal (nloglogn vs. nlogn) or circular & nonisothetic (nlogn
vs. n'+¢), is an outstanding open problem. Whether this is the case or not, this work
makes it likely that improving the lower bounds derived from the spectral and trace
lemmas will prove either impossible or at least extremely challenging.
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Appendix

Proof of Lemma 4.2 A multiple point (z,y) of line (3) is such that, modulo m,
(z,-y), (—z,y), or (—z,—y) belongs to the line. Note that the multiplicity can be as
high as 4: for example, take the point (3,2) on the line 2X 4+ 3Y = 0 (mod 12). We
count the number of pairs (p,£) for all points and lines, where p = (z,y) is a multiple
point of line £. By symmetry it suffices to consider the two cases: (i) (z,y), (—z,y) € £

and (11) ('Ta y)’ (—.T, _y) €L

(i) Using the characterization (4), it follows that 2f,y = 2f (mod f), 2z = 0 (mod f),
2y = 2go (mod g), and 2gyz = 0 (mod g). The number of pairs f,g is at most
2¢(m) while the number of pairs fo, go is equal to fg. For fixed fo,go, there are
at most 4fd(f) pairs of the form f,,y and, similarly, 49d(g) pairs of the form
gy, T. We briefly explain why in the case of f;,y, the other case being similar. We
shall use the fact that the equation 2y = 2gy (mod ¢) has at most two solutions;
therefore, by the CRT, fixing ¥y modulo f leaves at most two possibilities for y
modulo m.

e If f is odd, then f,y = fo (mod f). Fix a divisor f' of f and count the
number of pairs f,y such that (f, f) = f'. Since f’ must divide fj, we have
(fz/fy = fo/f' (mod f/f'). This means that y is unique modulo f/f’, and
hence one of f’ values modulo f and one of at most 2f’ values modulo m
(the factor 2 comes from the fact that y has at most two solutions modulo g,
for fixed go). There are at most f/f' choices for f;, which gives a total count
of 2f'(f/f') possibilities for the pair f;,y. Summing over all f’, this puts an
upper bound of 2fd(f) on the number of pairs f;,y.

o If f is even, then f,y = fo (mod f/2). Now, we fix a divisor f’ of f/2 and
count the number of pairs f,,y such that (f;, f/2) = f'. It follows that
(fz/fy = fo/f' (mod f/2f"), and so y is unique modulo f/2f’, and hence
one of 2f" values modulo f and 4f' values modulo m. This yields at most
f/f' choices for f,, which produces a count of 4f'(f/f') possibilities for the
pair fg,y. This time, we have an upper bound of 4fd(f) on the number of

pairs fg,y.

With our claim now proven, we see that the number of 8-tuples (f, g, fo. 90, fz, 9y %, Y)
is bounded by O(2(™) £2¢2d( f)d(g)). The function d is multiplicative (ie, d(z)d(y) =
d(zy) for relatively prime z,y), and so the number of multiplicities of type (i) is
0(2°™m2d(m)).

(i) We now have 2fp = 0 (mod f) and 2gp = 0 (mod g). The number of pairs
(fo,90) is at most 4. For fixed f, g, fo, g0, and fixed z (mod f) and y (mod g), the
previous argument shows that the numbers of pairs (f;,y) and (gy, z) are bounded
by 2fd(f) and 2gd(g), respectively. This gives a total of at most O(2*(™)m2d(m))
multiplicities of type (ii).
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