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Abstract

We prove that the red-blue discrepancy of the set system formed
by n points and n axis-parallel boxes in R? can be as high as n®(!) in
any dimension d = Q(logn). This contrasts with the fixed-dimensional
case d = O(1), where the discrepancy is always polylogarithmic. More
generally we show that in any dimension 1 < d = O(logn) the maxi-
mum discrepancy is 2%(@ . Our result also leads to a new lower bound
on the complexity of off-line orthogonal range searching. This is the
problem of summing up weights in boxes, given n weighted points and
n boxes in R?. We prove that the number of arithmetic operations is
at least Q(nd + nloglogn) in any dimension d = O(logn).

1 Introduction

A set system formed by n points and n axis-parallel boxes in R% is charac-
terized by its incidence matrix A, where A;; = 1 if the i-th box contains
the j-th point and A;; = 0 otherwise. The red-blue discrepancy of the set
system is the minimum value of || Az[|o over all z € {—1,1}". We prove that
in any dimension d = Q(logn) some set systems have discrepancy in n®1).
Interestingly, our lower bound also holds for the Hamming cube {0,1}¢.
More generally we show that in any dimension d = O(logn) the maximum
discrepancy is 2%(4).

It was already known [4] that in dimension O(logn/loglogn) the dis-
crepancy could be as high as nf2(1/10glogn) byt the dimension at which the
discrepancy became polynomial was left unresolved. We show that it is
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precisely ©(logn). Quite different from the number-theoretic construction
of [4], our proof is purely probabilistic. It is interesting to contrast our
result with the discrepancy of boxes in fixed dimension. Throughout this
paper we assume that d > 1. The discrepancy of boxes in R% is bounded by
O(logn)4t1/2/logTog n [6].

Using a complexity result from [4], a simple consequence of our bounds is
that the complexity of off-line orthogonal range searching is at least Q(nd +
nloglogn) in any dimension d = O(logn). Given n weighted points and
n boxes in R%, off-line orthogonal range searching is the task of computing
the added weight of all the points in each box.

2 The Discrepancy of Boxes

Throughout this paper, we assume that d > 1; the case d = 1 is trivial and
can be ignored. Also, the term box always refers to an axis-parallel box. We
state our main result and an immediate corollary.

Theorem 2.1 For any n large enough and any dimension d = O(logn),
there exists a set system of n points and n bozes in R, whose red-blue
discrepancy is 224

Corollary 2.2 For any n large enough and any dimension d = Q(logn),
there exists a set system of n points and n bozes in RY, whose red-blue
discrepancy is n(),

Recall that [7] the red-blue discrepancy is always in O(y/n ), and so the
remaining open problem is to determine the precise constant behind the ()
notation. As we shall see, the theorem is in fact stronger than stated, since
it holds for points and boxes in the Hamming cube {0,1}¢. Theorem 2.1
follows easily from the lemma below.

Lemma 2.3 For any n large enough, there exists a set system of n points

and n bozes in R, where d = O(logn), whose red-blue discrepancy is
Q(n0‘0477).

The theorem is trivially implied by the lemma for d > clogn, for some
constant ¢ > 0. Suppose now that d < clogn. Set ng = 24/¢ 50 that we
can apply the lemma with respect to ng and d. We can pad the set system
to be n-by-n by adding n — ng artificial points and boxes with no enclosure



relationships. The lower bound of Q(n%477) is also Q(24?9). We can assume
that d is large enough since a logarithmic lower bound is already known [3]
for d = 2. Thus the lower bound can be expressed more simply as 2(4).
We now prove Lemma 2.3. The hereditary discrepancy [5] of the set
system defined by A, which is denoted by herdisc(A), is defined as the
maximum discrepancy of any submatrix of A. By a simple padding argument
it is clear that a lower bound on the hereditary discrepancy implies a similar
bound on the red-blue discrepancy. We proved in [4] that if M = AAT then

1 . r M
herdisc (4) > ' M2/t M /“T, (1)

for some constant 0 < ¢y < 1. So, to achieve a red-blue discrepancy lower
bound of n®*(1) it suffices to exhibit a probabilistic construction of m points
and n boxes in RO1°8") with the following characteristics: for some constant
c =~ 1.0955,

(i) m=0(n) and tr M = O(n) with probability at least 1/2;
(i) E trM?%=0(n*"1).

Indeed, after appropriate padding and rescaling, we immediately derive from
these conditions the existence of a suitable n-by-n set system that, in view
of (1), implies Lemma 2.3. O

As we said earlier, both the point set and the boxes live in the Hamming
cube {0,1}¢. For the proof, we define a few parameters whose meaning we
explain below (all logarithms are to the base two):

_ 9
w = 1_2p_1(12f;;1)7p2 Toge’ where p = 0.153,
c = 2-(1-pw,
G = n L

We assume that both d % wlogn and pd are integral: this is of no con-
sequence as rounding off to the nearest integer produces lower-order errors
of no significance to our results. The m points are chosen by picking each
element of the Hamming cube {0, 1}? independently with probability n'~.
(Note that w =~ 1.067867, so n!~ < 1.) The expected number of points is
n. In fact, by Chebyshev’s inequality, we have

Lemma 2.4 With probability > 1/2, the number m of points is O(n).



A box is specified by a word of length d, over the alphabet {0, 1, x},
containing exactly pd stars. For example, in dimension 5, the word 0 * 1 * %
denotes the three-dimensional box 1 = 0, x3 = 1. We construct the n boxes
by specifying G groups of parallel boxes. Each group is defined by selecting
the location of the stars first (the star pattern), and then taking all the
corresponding boxes. To specify the star pattern, we choose pd coordinates
uniformly at random (without replacement) and make them stars. In our
previous example, the group of parallel boxes consists of 0% 0 * *, 0% 1 % *,
1% 0% %, and 1 1 % *. The number of boxes is precisely 20-P4G = n.

Each point in the set system belongs to exactly one box in each of the
G groups, so that tr M = m(G. By Lemma 2.4, we have the following result,
which implies that condition (i) is satisfied with probability > 1/2.

Lemma 2.5 With probability > 1/2, the trace of M is ©(n°).

We now turn to the trace of M2 and bound it from above as a function
of n. By definition,

tr M? = O(01,1 + 012+ 02,1 + 022),

where o; ; counts the number of pairs (I, J) such that I O J, where I is the
intersection of ¢ distinct boxes and J is a set of j distinct points. Next, we
derive upper bounds on all these numbers, beginning with

EO’1,1 :EtrM:nc. (2)

The next derivations are straightforward:

Eoi = 0(n*!) and Eoy,; = O(n*71). (3)

Why? Any one of the 2P Hamming cube vertices lying in a given box
belongs to the set system with probability n!~%. There are n boxes, so

Eoio= O(n(2pdn1_“’)2) = O(n3720-Pw),

which takes care of 01 2. Regarding o091, note that boxes within the same
group are disjoint, so only pairs in distinct groups can contribute to o9 .
Fix two such groups. Any one of the 2¢ points of the Hamming cube belongs
to exactly one pair of boxes. Since such a point is picked with probability
n!=%, we have E o1 = O(G?24n'~%) = O(n?*~!) and, hence, (3).

Finally, we turn to the expectation of o2 :

4



EO'Q,Q — O(nQC w+1 2 p w Ogelogn) (4)

Again, fix two groups of parallel boxes, and let £ be the number of stars
common to both star patterns. As we just saw, any point of the Hamming
cube belongs to exactly one pair of boxes, and this point can be paired with
exactly 2% — 1 other points. Each point being picked with probability n!~—%
it follows that

?

o990 = O(G22d+mn2—2w)

and, hence,
Eoys = O(n* ) E2°.

To bound the expectation of 27 is easy. Using the notation

N NN-1)- (N—k+1)

and the inequality k! > (k/e)*, we find that

. d—pd\ /(d\ 4 2¢(pd)(d — pd)par /{ d
B2= Z2k< )(pd—pk>/<pd> > pkzlzpd—i)!pd k/<pd>

k=0
(2pd)*(d — pd)pa(pd)i; /(d) _ & 2ep2d2) (d = pd)pa (d)
: ,CZ:% k!(d — 2pd)* (pd)! / (pd> ,CZ::O (1 —2p)* (pd)!/ pd
pd 2 k
» 2ep“d

The function (A/z)* is maximized at x = A/e, therefore
E 27 = O(n(log @’ w(1+20)/(1=20) 150 1)
hence (4). In view of (2,3,4),
Etr M? = O(nc 4+ p2el 4 p2e wtep mogelogn)
= O(ch_l + nZC_l_% log n) = O(n*71),

which establishes condition (ii), and hence Lemma 2.3 and Theorem 2.1. O



3 The Complexity of Orthogonal Range Searching

The construction of points and boxes can be used to prove a lower bound on
the complexity of off-line orthogonal range searching. This is the problem
of adding up weights in n boxes, given n weighted points. Specifically, we
are given n axis-parallel boxes and n points in R¢, fixed once and for all.
The input to the problem is an assignment of reals (the weights) to the
points, and the output is the sum of the weights of the points within each
box. Equivalently, the problem is to compute Az given x. From [4] we know
that the size of any linear circuit with bounded coefficients for computing

z— Az is
Qg(nlog(trM/n—ey/trMQ/n)),

for any positive constant €. Setting £ small enough gives a lower bound
of Q(nlogn) for orthogonal range searching in dimension Q(logn). This is
to be contrasted with the current O(n loglogn) lower bound for orthogonal
range searching in fixed dimension [2].

The case of dimension d = O(logn) is handled as we did before. We
create a problem of size ng = 29@ in dimension d, with ng sufficiently
small with respect to d that we can apply the previous result. The prob-
lem requires a circuit of size Q(nglogng). We make about n/ng copies of
it (with different weight assignments, of course) to boost the complexity to
Q(nlogng), which is Q(nd). Since, for d = 2, the complexity is at least
Q(nloglogn), we can safely conclude that the circuit complexity of orthog-
onal range searching in dimension d = O(logn) is Q(nd + nloglogn), as
claimed.

Theorem 3.1 Off-line orthogonal range searching in R® has complezity
Q(nd + nloglogn) for any dimension d = O(logn).
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