INFORMATION AND CONTROL 64, 77-99 (1985)

How to Search in History*
BERNARD CHAZELLE®

Department of Computer Science,
Brown University, Providence, Rhode Island 02912

This paper considers the problem of granting a dynamic data structure the
capability of remembering the situation it held at previous times. We present a new
scheme for recording a history of A updates over an ordered set S of n objects,
which allows fast neighbor computation at any time in the history. The novelty of
the method is to allow the set S to be only partially ordered with respect to queries
and the time measure to be multi-dimensional. The generality of the method makes
it useful for a number of problems in 3-dimensional geometry. For example, we are
able to give fast algorithms for locating a point in a 3-dimensional complex, using
linear space, or for finding which of n given points is closest to a query plane. Using
a simpler, yet conceptually similar technique, we show that with O(n?)
preprocessing, it is possible to determine in O(log? n) time which of n given points
in E* is closest to an arbitrary query point. € 1985 Academic Press, Inc.

1. INTRODUCTION

Consider the problem of maintaining a dynamic data structure over time.
Typical operations will involve inserting new objects, deleting old objects,
and of course, querying the data structure about its current state. If the
structure is a dictionary a query is to look up a given item; if it is a priority
queue it 1S to retrive the minimum or maximum element from the current
set. In some applications it is sometimes needed to keep track of the con-
figurations the data structure held at previous times. This need might arise
in databases, for example, when one wishes to retrieve old information, or
in other words, search in the past. In other contexts, the notion of time is
only indirectly relevant. In circuit design rule checking, for instance, sweep-
line algorithms are often used to report all pairs of intersecting rectangles
(McCreight, 1980). It is convenient (and colorful) to think of, say, the
sweeping direction as a time axis. This is all the more relevant that a
sweep-line algorithm will indeed induce a one-to-one correspondence

* This paper is a revised and expanded version of a paper presented at the International
Conference on “Foundations of Computation Theory” held in Borgholm, Sweden, August
21-27, 1983.

*This research was supported in part by NSF Grant MCS 83-03925 and the Office of
Naval Research and the Defense Advanced Research Projects Agency under Contract
N00014-83-K-0146 and ARPA Order 4786.

77
0019-9958/85 $3.00

Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

78 BERNARD CHAZELLE

between sweeping time and position on the sweeping axis. The problem of
searching in the past corresponds in this case to asking questions about the
state of the data structures attached to the sweep line at any particular
point in time. Study on search in the past was initiated by Dobkin and
Munro (1980) and taken up exhaustively by Overmars in his doctoral
thesis (Overmars, 1983).

Consider the following problem, typical of searching in the past. Let S be
a universe of n objects v,,...,, v, subject over time to A deletions and inser-
tions in arbitrary order. Assuming that there exists a total order among the
objects, Dobkin and Munro have described a method for computing, in
time O(log nlog h), the rank of any object at any given time, i.e., the num-
ber of objects that preceded it at that time. One remarkable feature of their
method is to avoid recording the “state of the universe” at all times, which
would take O(nh) space. Instead, they use a clever tree structure to limit
the storage requirement to O(n+hlogn). The query time of their
algorithm was subsequently reduced to O(log(/# + n)) by Overmars (1981).
Overmars also observed that if we are only interested in testing mem-
bership, i.e., finding if object v; was present in the data structure at time 6,
we can further reduce the storage to O(n+ h) by simply recording the
history of each object individually. To each v, we associate a list of non-
overlapping intervals corresponding to its life periods.

In this paper we look at the problem of finding which v; immediately
preceded a new object ¢ at time 6. We will see that if either the time
measure is 1-dimensional or if there exists a total order among the objects
that the query can “use,” there are simple solutions to the problem. Unfor-
tunately, neither condition is true in the geometric applications given in
this paper, therefore more general alternatives must be sought. We will
present a data structure that requires O(n + £) storage and allows the com-
putation of any neighbor, in the sense defined above, in O(log n log h) time.
Aside from its improved performance, the novelty of the method is to allow
the set S to be only partially ordered and the time measure to be multi-
dimensional, if necessary. This generality allows us to use the method for
solving a number of problems in 3-dimensional geometry. For example, we
are able to give an O(n) space, O(log? n) query time algorithm for locating
a point in a 3-dimensional complex with n faces endowed with some order-
ing property. This can be applied to the complex formed by »n hyperplanes,
which leads to an O(n®) space, O(log? n) query time algorithm. This also
allows us to determine which of » given points in E? is closest to a query
plane with the same time and space complexity. Using a slightly different
technique, we show that with only O(n?) preprocessing, we can determine,
in O(log? n) time, which of » given points is closest to an arbitrary query
point. This result considerably improves the best solution previously
known (Yao, in press).

HOW TO SEARCH IN HISTORY 79
2. THE PROBLEM

Before describing our data structure, let us give a more formal presen-
tation of the problem. Let S= {v,,..,v,} be a set of n objects, provided
with a partial order R. W.l.o.g. we can assume that v, < --- <v, gives a
total order that embeds the partial order R (i.e., the v, are topologically
sorted). Each object is given the possibility of being either active or
inactive, depending on the value of a parameter 6. More formally, we
introduce the sets S(8)={v,| 1 <i<n and h(8)=1}, where h(0) is a
characteristic function in {0, 1}. Note that S induces a total order on S(9).
The parameter 6 takes on any value in a domain @, which in most
applications will be R* (R =set of real numbers). Note that only in the
case d=1 it is legitimate to refer to 6 as a measure of “time.” We will
assume that the number of distinct sets S(6) is always finite. The collection
of all these sets is called a history and its cardinality is denoted A. Next, we
define a query as a pair (g, 8), where g is an object (not necessarily in S)
which “extends” the total order in S(8), i.e., the outcome of “g<v?” for
each object v in S(0) does not contradict the total order on S(8). This out-
come is meaningless, however, if v does not belong to S(6). We define the
neighbor of q as the largest object v in S(8) such that v < g. By convention,
if no such object exists, the neighbor of ¢ is denoted —oo. The first
problem of interest in this paper thus is:

Preprocess S so that the neighbor of any query can be computed very
effectively.
Such a statement is, of course, too general to lead to practical solutions,

so we refine it to deal with some interesting cases. First of all, the case
=R

3. THE CANAL-TREE

3.1. The Basic Ideas

When & =R (as in Dobkin and Munro, 1980; Overmars, 1981), it is
natural to refer to 6 as a time measure, since its values can be totally
ordered. W.l.o.g. we assume in the following that between two consecutive
time intervals, S(8) can change in at most one place. This can always be
ensured by duplicating time breaks if necessary. Before proceeding with a
description of our data structure, let’s briefly review the basic features of
Dobkin and Munro’s method. It essentially consists of looking at the inter-
val spanned by each node of the complete binary tree over {1,..,n}, and
keeping a chronological list of their cardinality, 1.e., the number of active
objects they span at any given time. It is then easy to retrieve any of these

64364 | 3-6

80 BERNARD CHAZELLE

cardinalities in time O(log #), since each list has at most 4 elements.
Furthermore, a simple search in the tree enables us to sum up all the
relevant cardinalities and compute the rank of any object. Since there are
at most [logn] such cardinalities, the query time is O(lognlog #), and
since each insertion/deletion need be recorded in at most [log n'] lists, no
more than O(n+ hlog n) space is thus required. Using a layered structure
(Willard, in press), Overmars (1981) was able to improve the query time to
O(log(n + h)).

Since searching for neighbors is our main concern, we can avoid com-
puting ranks altogether and, doing so, save a factor of logn in space.
Before proceeding with a description of our method, a few important
remarks are in order. As observed by Overmars (1981), we can view the life
periods of each object as vertical intervals in the Euclidean plane, whereby
the ordered list v,..., v, is spread along the X axis and the time corresponds
to the Y axis. A simple solution consists of storing the vs in a complete
binary tree, in inorder, with a chronological list of life periods attached at
each node. This is a viable solution when it is possible to decide whether to
branch left or right on the basis of a comparison ¢ :: v;, even when v, is not
present at time 0. Unfortunately in all of our applications, there is only a
partial order among S and query objects, therefore any comparison
between a query object and an inactive element of S is meaningless. This
rules our this solution as well as the following one, valid only when, as
before, we do have a total order among S and the query space and further-
more # are 1-dimensional. Since the problem essentially reduces to finding
the vertical segment immediately to the left of a query point, we can
introduce horizontal segments to subdivide the plane into regions with
common “answers.” This is the adjacency-map of Lipsky and Preparata
(1981), and we refer the reader to this reference for details of the construc-
tion. With this structure in hand, it suffices to locate the query in the sub-
division, which we can do using any optimal planar point-location
algorithm. This leads to an O{(n+h) space, O(log(n+h)) query time
algorithm, which unfortunately does not fulfill our needs because of our
insistence on (1) no assumption of total order between S and the query
space, and (2) multi-dimensionality.

To circumvent these difficulties, we introduce a new data structure 7T,
called a canal-tree. T is a complete binary tree with n leaves, the ith from
the left corresponding to v;. Since 7 is essentially a static tree, it should
probably be stored in an array so as to avoid the use of pointers. Simplicity
will dictate our choice in the matter, however, and we will avoid overbur-
dening our exposition with issues of implementation optimization. Let us
first describe a tentative data structure, which we will use as a stepping-
stone for constructing the canal-tree. 1deally, we would like to keep in each
internal node v of T a pointer to a list, L(v), which gives a chronological

HOW TO SEARCH IN HISTORY 81

account of all the largest active objects in the interval spanned by the left
subtree rooted at v. More precisely, let z be the left child of v and let I(z) be
the interval [, j] such that the leaves of the subtree rooted at node z are
from left to right {v,,.., v;}. Let v, ,.., v, be the list, in chronological order,
of the largest objects in S(#) during the history, with indices in 7(z), and let
f; be the time corresponding to v;’s promotion. L(v) is simply the list of
pairs {(60;,v,),..., (04, v;,)}. We define the f-entry of L(v) as the pair (0}, v,)
such that 6, <0 <0, (for consistency, we may assume that 0, is always
0). Tt is clear that by traversing 7 in inorder, each internal node v can be
uniquely associated with an interval (v, v,, ,); we can therefore extend the
concept of neighbor to v itself, and define n(v, 8) as the largest object v, in
S(8), with /el(z). Answering a query (g, f) can now be easily described.
Starting at the root of 7, we find n(root, 0) in O(log &) time, by performing
a simple a binary search in L(root). If g=n(root, d), we are clearly
finished; otherwise if ¢ > n(root, #), we keep n(root, 8) as a potential can-
didate and we iterate on the right child of the root, and if ¢ <n(root 9), we
blithely branch to the left. This type of binary search is fairly standard and
we may omit the details.

The unfortunate feature of this scheme is to be wasteful in its use of
space. Indeed, let z,,..., z,, be the internal nodes of 7 on the leftmost path
from the root, and let w, be the right child of z, (Fig. 1). Suppose now that,
at times 0,,..., 6,, none of the objects in I(w,),..., f(w,,) is ever active but,
instead, v, is alternatively active and not active. This will cause each of the
lists L(z,),..., L(z,,) to contain the h-element sequence {(0,, v,), (8., —),
(04, vy), (84, —00,...}, which will entail the use of O(n+ A log n) storage.

The canal-tree is a simple modification of the tree described above. Here
we avoid duplicates by recording events only once: let z ..., z, be the list of
internal nodes, on the path from v, to the root, that appear after v, in
inorder. Informally, z,,..,, z, are the nodes encountered after each rightward

FIGURE 1

82 BERNARD CHAZELLE

move on the way up from v, to the root. Let w, denote the right child of z,.
Suppose now that an insertion or a deletion of v; takes place at time 6, and
consider the largest index j such that /(w)),.., I(w;) are all free of active
objects at 6 (Fig. 2). It is clear that whether v, is inserted or deleted, the
only nodes of 7" which witness a change in neighbor are precisely z,,..., z;.
The main feature of the canal-tree, however, will be to record the event in
L(z;), only. It will result from this restriction that, since only one update is
necessary per operation, the total space needed to store the lists L(v) will
be O(n+h). We will use the remainder of this section to describe the
update operations and show that the canal-tree still allows efficient
searching.

Before proceeding, let us give an image to help visualize the workings of
the canal-tree and also justify its name. Figure 3 illustrates the canal-like
structure of T: let S(0)= {v;,v,,.,v,} be, as usual, the list of objects
active at time 0, in left-to-right order. We introduce the canal of v, as the
path from v, to a node z;, defined iteratively as follows: z, is a pseudo-root,
situated right on top of the usual root. In the general case, z; is the first
point of contact with the canal of v, . We will refer to v, (resp. z;) as the
source (resp. sink) of the canal, which itself will be denoted C(v;). Let v
(resp. w) be the left (resp. right) child of the root. We observe that when
the objects in I(w) are not all inactive, the root is the sink of the canal
whose source is the largest active element in /(v). We can now state the
basic requirement of the canal-tree: for all j; 1 < j<k, the index i; should
appear in the 6-entry of L(z,), paired of course with the value of § when v,
was last activated. In other words, L(z;) should contain a pair of the form
(0%, v,); 0% <0.

FIGURE 2

HOW TO SEARCH IN HISTORY 83

pseudo-root-= z,

raot» Zg

FIGURE 3

With this new, more economical scheme, it is clear that the lists L(v),
considered individually, may give us erroneous information about current
neighbors. To allow for proper use of these lists, we must include in them
the times 6 at which the current information ceases to reflect reality. More
precisely, each list L(v) will be a sequence of the form

{0, 0,), ..., (0, v,), O™,

whereby 0" signifies that v, should not be relied upon as an indicator of
n(v, 0) for 0; 0"V <<0,,,. By “not to be relied upon,” we mean that
although the information may be occasionally correct, we should never use
it, for it may not always be so. Note that we will often have ¢ =0, |, in
which case we should simply omit §¢"*’ from the list, altogether. For con-
venience, we will refer to 0" as an info-unavail flag. To summarize, we
state the fundamental property of the canal-tree:

FACT. At any time 0 € @, the B-entry of any interval node v of T is of the
form (6%, v,) (with 6* < 8) if v is a currently a sink, or is an info-unavail
flag, otherwise.

84 BERNARD CHAZELLE

Let [op, i, 8] be a shorthand for “apply operation op (activate or dac-
tivate) to v; at time #.” We can represent the history of .S as a sequence of
triplets [op, i, 8], ordered with respect to 6. Setting up 7 simply involves
going through each instruction of the history in turn, updating the lists
L(v) accordingly. We will assume that, initially, all the lists L{v) are empty.

3.2. Setting Up the Canal-Tree

We are now ready to give a description of the algorithms for activating
and deactivating an object, respectively. We proceed in chronological
order, one step at a time.

1. Activating an Object

Informally, activating »; at time # involves tracing down the path from
the root to v, and determining the last canal visited. A new canal is started
at v, flowing up towards the root, overtaking any canal to its left, but stop-
ping as soon as it runs into a canal coming from the right. Let v, be the
source of this canal, and z be the last node visited on the canal. There are
basically two cases to consider (Fig. 4):

Z Z
w wgg
(a) " h
. . 1

u u
—_—
4
Zz
w
(b) Vj Vi Vi Vi

FIGURE 4

HOW TO SEARCH IN HISTORY 85

1. Suppose that i < j (Fig. 4a). Let w denote the left child of z. Since z
is the first canal node on the path from v, to the root, none of the objects in
I{w) is active at time 6, therefore we have n(z, 0) = v, and n(v, 8) # v,, for all
the ancestors v of z. Furthermore, the global inactivity of I(w) prior to 6
shows that all the f-entries in the subtree rooted at w are info-unavail flags,
and should remain so. Therefore, the only updating required consists of
appending (6, v;) to the end of L(z).

2. Suppose that i > j (Fig. 4b). Let w denote the right child of z, and «
be the sink of C(c;). We must introduce a new canal C(v,} with « for sink,
and we must move the sink of C(v;) down to z. This involves appending
(0,v;) and (0, v;) to the lists L(u) and L(z), respectively. Since no sink is
either destroyed or created, no info-unavail flag has to be added.

Note that the new canal from v, can overtake at most one canal, since
essentially the canal from v, ceases to be new as soon as it runs into
another canal. In both cases finding the relevant nodes u, w, z mentioned
above is straightforward. To do so, we simply have to traverse the tree
from the pseudo-root towards v,, using a standard binary search, and stop-
ping at the first node encountered that is not on a canal. To be able to do
this as well as the updating described above, it suffices to keep track, at all
times, of the most recent sink visited from which we left a canal. Since this
involves only checking whether the current node v is a sink towards whose
source we are heading, a simple look at the last item of L(v) suffices,
therefore activating v; requires only O{log n) operations.

II. Deactivating an Object

Let z be the sink of C(v,) and let w be the left child of z (Fig. 5). If I(w) is
entirely inactive right after 6, the only action to take is clearly to append an
info-unavail flag to the end of L(z). Otherwise, the only active objects in
I{w) can only be of the form v, for / < i {(see iterative definition of the canal-
tree). Let j be the largest such index /I Note that the sink u of the canal
C(v;) is the last sink encountered in a downward traversal of C(v;). Once
we have found this node, we only have to append (8, v,) to the end of L(z)
as well as include an info-unavail flag at the end of L(u). To justify the
passing of this flag, one should try to imagine the consequences of not
doing it if, at the next step, v, were to be deactivated, i.c., multiple updates
would then be necessary.

There again, finding all the appropriate nodes u, w, z can be done easily
by walking down the tree, and keeping record of (1) the most recent sink
visited from which we left a canal (e.g., z), (2) the most recent sink visited
(e.g., u). Since both pieces of information can be updated in constant time
at each node v visited, by simply looking at the last item in L{v), the
algorithm requires O(log n) operations. We can finally conclude:

86 BERNARD CHAZELLE

FIGURE 5

LEMMA 1. The canal-tree can be constructed in O(n+ hlog n) time and
O(n+ h) space.

3.3. Computing Neighbors

We can now show how to use T for computing the neighbor of a query
(g, 9). Starting at the pseudo-root, we retrieve the corresponding f-entry
and terminate if it gives us an info-unavail flag. This would, indeed, signify
that all the objects were inactive at 0, so —oo should be our answer. If]
instead, the f-entry is a pair (6* v;), we start the iterative part of the
search. Informally, we follow the current canal always trying to branch left
to the first canal C(v,) with ¢ <v; (Fig. 6). More precisely, we need to keep
track of two variables: (1) cur, the index of the current canal traversed, (2)
last, the index of the last sink visited to whose canal we did not branch.
Initially, cur=7 and last= —oo. At the generic step, let C(v,) be the
current canal, F be the #-entry of the current node v, and w be the next
nodes after v on C(v,). If Fis an info-unavail flag, we simply proceed to the
next node towards v,, and iterate. Assume now that F is of the form

HOW TO SEARCH IN HISTORY 87

FIGURE 6

(6*, v,), in which case w must be the right child of v. If g=v,, we return v,
and stop. If ¢ <v,, we set cur=¢ and branch left, otherwise we set last =¢
and proceed to the right. When we eventually reach a leaf of 7, we return
the current value of last. Since computing each f-entry takes O(log k)
operations, the entire search requires O(log nlog /) time. We conclude:

THEOREM 1. [t is possible to record a history of h events involving n
objects in O(n+ h) space, so that retrieving any neighbor information can be
done in O(log nlog h) time.

Recently Cole (1983) has shown that it is possible to improve the query
time of this method to O(log n + log #) method by a clever combination of
hive-graphs (Chazelle, 1983) and layers (Willard, in press). This
improvement has no incidence on the multi-dimensional use of canal-trees
or the 3-dimensional point-location algorithm developed below, however.

3.4. Generalizing to Multidimensional Parameters

The key to the method described above was to be able to produce a
snapshot of the canal-tree at any time very efficiently. Unfortunately, this is
not always easy, in particular when the parameter # is multi-dimensional.
In that case, we may no longer be able to arrange the sinks in linear lists to
reflect the chronological sequence of events, since even the very notion of
chronology becomes ill-defined. We observe, however, that since the use of

643 64:1.3-7

88 BERNARD CHAZELLE

canal-trees makes the whole problem totally local, ie., comes down to
allowing fast sink retrival at each node, we can still formulate a model in
which efficient search in history is always possible by means of canal-trees.
Let 8 R (d> 1). Let T(#) be a snapshot of the canal-tree T at time 6. We
define J(v) to be the set of distinct values of the sinks, for all 8 € @. Assume
that there exists a data structure DS(J(v)) that organizes the elements of
the set J(v) in such a way that we can compute the sink-value of T(0) at v,
in time O(Q(A)). In this model, it is clearly possible to adapt the algorithm
described earlier so as to compute the neighbor of any query (g, 8) in time
O(Q(h)log n). We will show in the next section how this result can be used
to derive new algorithms for several geometric problems.

4. GEOMETRIC APPLICATIONS

We will apply the previous ideas to point-location problems: consider
the task of locating a point in a planar subdivision. Although this problem
has already been given several optimai solutions (Cole, 1983; Edelsbrun-
ner, Guibas, and Stolfi, in press; Kirkpatrick, 1983; Lipton and Tarjan,
1977), we will for the sake of illustration show how to use canal-trees to
produce a very simple near-optimal aigorithm:

4.1. Planar Point-Location

Let S= {s,,..,s,} be the segments of a straight-line subdivision of the
plane. We can obtain a total order on S by topologically sorting the
relation =, defined as follows: s5,=<s; whenever there exists a line parallel
to the X axis that intersects s, (resp.s;) in p (resp.q), with p<g with
respect to the X coordinate. We precompute this partial order by sweeping
a horizontal line L downwards, maintaining the current order of the inter-
sections with L in a dynamic balanced search tree. The line L starts at the
highest vertex of G and proceeds to visit each vertex of G in turn in
descending Y order. If the current vertex is the upper end of a segment, this
segment is inserted into the tree, otherwise it is deleted. This method is very
standard (Bentley and Ottmann, 1979), so we may omit the details. The
next step is to embed the partial order in a total order, which simply
requires a topological sort. We are now ready to set up a canal tree T on
the following basis: 6 is the Y coordinate of the line L, and S(8) is the set
of segments that intersect L when positioned at y = 8. Since an event in the
history corresponds to the promotion or demotion of an edge, we have
h=2n. Finally, comparing a query point against an object simply involves
computing the relative position of a point with respect to a line. Note that

HOW TO SEARCH IN HISTORY 89

this scheme will also handle subdivisions made of n curves monotone in the
Y direction.

THEOREM 2. It is possible to use a canal-tree to solve the planar-point
location problem in O(n) space and O(log* n) time.

This method is akin to Lee and Preparata’s (1977) algorithm; it shows
that the latter is a particular instance of a general searching technique to
which canal-trees are especially tailored. The basic difference with their
algorithm is that we do away with the actual computation of “geometric
chains.” Instead, our method relies on the topological (rather than
geometrical) nature of the problem, and thus, reduces the geometric part of
the algorithm to its simplest expression. This has the effect of granting the
algorithm great conceptual simplicity. Also, the basic generality of the
method makes it directly applicable to other problems as well. The
algorithm can be used, for example, to compute the horizontal neighbors of
a query point, given a set of » pairwise disjoint segments. This involves
reporting the first segment to the right and to the left of the query point
that intersect a horizontal line passing through it.

4.2. Spatial Point-Location

Using a more general method, Dobkin and Lipton (1976) have shown
how to solve the point-location problem in higher dimensions. Assume that
the regions are defined by n arbitrary hyperplanes in d-dimensional
Euclidean space, i.e., the regions form a d-dim complex. Dobkin and Lip-
ton’s method requires O(n* ') space and O(2¢log n) time per query. The
purpose of this section is to show how point-location problems in general
can be viewed as history retrieval problems, for which canal-trees can be
used. We will illustrate our point by presenting an improved algorithm for
searching a 3-dimensional complex.

Let P be a 3-dimensional complex, regarded for our purposes as a par-
tition of E* into polyhedra. We assume that either all the polyhedra are
convex (think for example of a Voronoi diagram in E*) or exactly one of
them is non-convex. In the latter case what we have in mind is the convex
partition of a convex polyhedron to which we adjoin the outside, unboun-
ded polyhedron. We assume that no face in P can intersect a given line
parallel to the X axis in more than one point. This can always be satisfied
by slightly rotating the axes, if necessary. Let n denote the number of faces
in P. It is easy to show that, up to within a constant factor, n gives the size
of any standard representation of P. Let {P,,.., P,} be the set of polyhedra
in P and let V,, E,, F; denote respectively the number of vertices, edges,
and faces of P, (1<i< p). Since any standard representation (e.g.,

90 BERNARD CHAZELLE

z
Y‘J/'X a<bscsal

FIGURE 7

adjacency-lists) will be of size O(X, <, < ,(V,+ E; + F})), it suffices to show
that for some onstant ¢ >0, we have

Y (Vi+E+F)<cn. (1)

I<i<p

Since each vertex in P, is adjacent to at least three edges, we have
3V.<2FE,;, therefore by FEuler's formula (F,—E,+V,=2), we derive
E,<3F,—6 and V,<2F,—4. This shows that V;+ E,+ F, < 6F,, and since
each face appears in at most two distinct polyhedra, we have
Yi<i<p, Fi<2n, therefore X, .. (V;+ E;+ F,)<12n, which establishes
(1).

Next, we define the cap of a convex polyhedron of P as the subset of its
faces looking to the right inward, ie., faces whose inward-directed normal
vector has a positive X coordinate. From our assumptions on P, it easily
follows that the cap of a polyhedron Q is a connected set of faces whose
projection on the YZ plane is a convex partition of a convex polygon
(Fig. 8).

We define the following order among caps: C<XC’ if there exist two
point (x, y, z)e C and (x', y, z) € C" with x < x’. Whenever it is possible to
find a direction for the X axis such that this order is embeddable in a total
order, we say that the complex P is acyclic. Unfortunately, complexes are
often non-acyclic as suggested by Fig. 7. It is however always possible to

FIGURE 8

HOW TO SEARCH IN HISTORY 91

refine the complex so as to make it acyclic (Fuchs er al., 1980) so we will
assume from now on that P is acyclic. This refinement typically involves
splitting faces, therefore usually causes the introduction of new vertices. Let
S={C,., C,} be the set of caps given in an order that embeds the partial
order.

For the sake of clarity, we will first describe a method for locating a
point in P that is slightly wasteful of space. With this background it will
then be easy to proceed with the description of a linear space algorithm.
The underlying search structure T will be a canal-tree defined over the m
caps, with the left-to-right order of the leaves corresponding to the order of
the caps. We attach an additional search structure to each leaf, so that once
the neighboring cap of a query point has been found, we can refine that
piece of information and obtain its actual neighboring face. Since the pro-
jection of a cap on the YZ plane is a planar graph, we can use any optimal
planar point-location algorithm for that purpose (e.g., Cole, 1983;
Edelsbrunner et «l., in press; Kirkpatrick, 1983; Lipton and Tarjan, 1977).
This requires an amount of space linear in the size of caps, so it does not
affect the asymptotic space complexity of the whole data structure.

Let L be any line parallel to the X axis; we say that the cap C, is right-
visible with respect to a subset of caps W, if there exists a position of L for
which the intersection of C; and L is a point with maximum X coordinate
among all intersections between W and L. Let r be the pseudo-root of the
underlying tree structure 7. We define J(r) as the set of all caps C, in S that
are right-visible with respect to S. J(root) is defined in a similar manner
with respect to the set {C,,.., Cr,,2+}. In general, for any internal node v,
the set J(v) contains all the caps in /(z) that are right-visible with respect to
I(z), where z is the left child of v. Since a query (g, #) is now a point
(x, y, z), with ¢g=x and 0= (y, z), let us define L(0) as the line parallel to
the X axis that passes through (x, v, z). The neighbor of (q, 8) in I(z) is
defined as the cap C;e I(z) that intersects L(6) at the point with largest X
coordinate < x (or any of them if there are several). If there is no such
point, the neighbor is taken to be — oo, as usual. Since we have organized
each cap with a planar point location structure, it is easy to retrieve in
O(log n) operations the face of the cap C, that intersects L(6). The next
step is to organize J(v) into a data structure, DS(J(v)), which allows us to
compute the neighbor of (g, 8) in I(v) very efficiently.

I. A Tentative Solution

For the sake of clarity we will, in a first stage, drop the compaction
feature of canal-trees, i.e., the requirement that an object be stored in its
corresponding sink and only there. This simplification implies that each
node v contains, at all times, the proper information to ensure correct
branching. We can regard the problem of branching at node v as a

92 BERNARD CHAZELLE

generalized planar point-location problem. Indeed, let C,.,...,, C; be the caps
of I(z) in increasing order (recall that z is the left child of v). Assign a dif-
ferent color to each cap and project their boundaries on the ¥YZ plane. We
obtain a set of convex polygons, which we next fill with their respective
color, applying the painter’s algorithm (ie., in the order C;,..., C;) so as to
resolve conflicts. This produces a subdivision K(v) of the plane into
polygons ¢,,..., t,, each part ¢, emanating from a cap C/,. It is important
to note that K(v) contains the projection of the boundaries of the caps
(cap-projections, for short) and none of the edges within the interior.
Finding the rightmost intersection of L with {C,,.., C;} clearly reduces to
locating the region ¢, that contains the point (y, z), and reporting the cap
C,. From that information, we can next turn to the planar point-location
structure stored at the leaf C,, and retrieve the intersecting face in
O(log n) time.

The choice of caps, rather than faces, as our basic objects is motivated
by the following, crucial fact: each edge of K(v) is the projection of a full
cap edge. This implies, in particular, that each edge in the caps of I(z) con-
tributes at most one edge in K(v), therefore storing K(v) takes O(V)
storage, where V is the number of vertices in all the caps of I(z). To prove
the former claim, let us show that each edge u of K(v) is the projection of a
whole edge e of some cap C, and not just some sub-part of it. Let Q be the
polyhedron whose cap is C,, and let f; and f, be the two faces of Q
adjacent to e, with f, < f,. Since some part of C, in the neighborhood of e
is visible, the cap containing f, is not in I(v), and for that reason, neither is
any face that could prevent a point of e from being visible. This shows that
the entire edge e is visible, which proves our claim. We should still be
aware that K(v) may not be a collection of disjoint cap projections. It may,
indeed, contain projections embedded into one another (Fig. 9).

To summarize, our tentative solution involves associating with v a data
structure DS(J(v)) = K(v), preprocessed for optimal point location. With
each face of K(v) we associate a pointer to the corresponding cap so as to
be able to retrieve the point n(v, @) ~ L(6). This scheme will clearly provide
an O(log? n) search time while requiring O(n log n) space.

II. An Improved Solution

Let us now use the compaction feature of canal-trees in order to reduce
the space requirement to O(n). Consider any point of a subdivision K(w).
This point corresponds uniquely to a point M on some cap C. The basic
principle of a canal-tree stipulates that M should be stored at the highest
node v from which it is right-visible (a shorthand for saying “right-visible
with respect to I(z), where z is the left child of v”). Of course, M will be
stored implicitly by keeping at v the set of all points of C sharing the same
property. To save space, we will actually only keep the projection of this

HOW TO SEARCH IN HISTORY 93

FIGURE 9

set on the YZ plane with a pointer to the cap C. Each point of a cap C has
a sink in the canal-tree, i.e., the highest node v from which it is right-visible.
This induces a partition of C into parts with common sinks. To visualize
this partitioning, just consider each subdivision K(v) as defined in the ten-
tative solution, and decompose the corresponding caps into the parts
induced by the subdivision. This defines new caps whose projections will
now be pairwise disjoint. This will grant caps the nice property of being
either totally visible or totally invisible from the right at any given node of
T. The idea is now to store each new cap at the highest node from which it
is right-visible. The holes thus left in lower levels will correspond to the
info-unavail elements of the canal-tree.

We next specify the sequence of operations in greater detail. Let r be an
internal node of T and let v be its left child. Let S, be the silhouette at v,
1e., the shadow created by /(v) on the plane X = —oo with a source of light
placed at X = +o0. §, can be obtained by coloring every face of K(r) that
is the projection of points lying on a cap of I(v); S, is in this case the set of
edge-disjoint polygons whose boundaries lie between colored and
uncolored faces. We say that a point is inside S, if it lies inside any of these
boundaries. Let v, (resp.v,) be the left (resp. right) child of v. Following
the main idea of the canal-tree, we wish to ensure that at node v only the
faces of K(v) inside S,, should be represented, since all other points have

94 BERNARD CHAZELLE

sinks higher than v. Let S, denote the set of points both inside some
polygon of S,, and some polygon of §,,. We will add to K(v) every edge in
S,, that lies inside S, ie., every edge of S, , that is not already in K(v).
The key observation is that as far as K(v) is concerned, any query handled
at v that falls outside S, is handled further up in the tree, i.e, at an
ancestor of v. Indeed, since each point in K(v) outside S, , corresponds to a
point on a cap that is right-visible from r, its corresponding sink is an
ancestor of v. As a result, we may simply delete each edge in K(v) that lies
outside S, ,. This sequence of additions and then deletions leads to a new
subdivision, denoted K*(v). Of course, each face of K*(v) outside S, will
be marked info-unavail, and K*(v) will, as usual, be preprocessed for
optimal planar point-location. We carry this construction of K*(v) for each
node v € 7, including the root.

Let us show that the space used is now O(n). An important feature of
K*(v) is that each of its edges is the projection of a whole side of a cap-
boundary (i.e., a full cap-projection edge). This property is true because it
also holds for K(v) and K(r). This allows us to associate each edge of K*(v)
with a cap edge. Note in particular that no edge of S,, need be split in
order to be added to K(v). We distinguish between old and new edges, i.e.,
edges of K(v)n K*(v) and those of K*(v)— K(v). Each old edge appears
only once, namely at the common sink of their points. Each new edge
appears also only once (as a new edge), but for a different reason: a new
edge in K*(v) is a silhouette edge, i.e., the projection of an edge of a cap C,
of I(v,) onto the cap projection of a uniquely defined cap C, of I(v,); this
new edge will be introduced at v, and more generally at the lowest common
ancestor of the two leaves corresponding to C; and C,. It follows that only
O(n) space is needed.

The neighbor search proceeds as specified in Section 3.3. This involves
performing a planar point-location at each node visited during the search,
branching left if we land in a face marked info-unavail, otherwise branching
according to the newly computed result. We leave out the details which
were given in Section 3.3. Once again we associate with each face of the
new subdivisions a pointer to the unique cap they correspond to. We have
avoided dealing with the time complexity of the preprocessing altogether,
for it is extremely dependent on the form of the input. We conclude:

THEOREM 3. [t is possible to preprocess an acyclic n-face complex so that
locating any point can be done in O(log® n) time, using O(n) storage.

Let us make a few comments about this result. The reason why we chose
caps and not faces as our basic objects comes from the fact that projecting
sets of right-visible faces on the YZ plane can often entail a quadratic
blow-up. Think of two sets of parallel strips, one vertical and the other

HOW TO SEARCH IN HISTORY 95

horizontal. Another difficulty comes from the fact that there are in general
many total orders to embed a given partial order and that consequently
little can be assumed on the relative position of consecutive faces besides
the known order between comparable ones.

As an application of Theorem 3, consider the 3-dimensional complex for-
med by n hyperplanes. It is easy to show that this complex is always
acyclic. To see this, consider the directed graph G induced by <. It is
clearly acyclic since no path from any cap C of a polyhedron Q can lead to
a cap outside the unbounded convex polyhedron R, where R is defined as
the intersection of the half spaces containing Q and bounded by the faces of
C. We may then embed the relation =<{ in a total order, and to do so, we
proceed as follows: for each polyhedron @ set an arc from its cap C to the
cap containing each of Q’s faces that are not in C. We avoid computing G
explicitly but, instead, simply number each cap by performing a topological
sort on H.

THEOREM 4. Given a subdivision of E® by n hyperplanes, it is possible to
determine which region contains a query point in O(log* n) time, using O(n*)
storage.

This result has a number of immediate corollaries. One of them is, of
course, the existence of an O(n®) space algorithm for determining, in
O(log? n) time, whether a given test point lies on any of n arbitrary planes
in 3-dimensional space. A simple duality argument shows that the same
result applies to » arbitrary points to be tested for containment in a query
plane. Using the fact that our algorithm returns “neighbors” and not only
region names, we can also prove that

THEOREM 5. It is possible to store n arbitrary points in E>, using O(n®)
storage, so that the closest point to a query plane can be determined in
O(log? n) time.

Proof. Let us map any point p:(x, y,z) of E* to the plane
flp):Z=xX+yY+z Since all the points of the plane
PraX+pY+yZ+e=0 will then be mapped to planes which all pass
through the point (a/y, /7, —¢/y), it is consistent, conversely, to map P to
the point f(P): (%/y, B/y, —¢/y). In this way, the vertical distance between
points and planes in invariant under the mapping. More precisely, let g be
the projection, parallel to the Z axis, of the point p (x, y, z) on the plane
P; similarly, let ¢ be the projection of the point f(P) on the plane f(p). We
easily check that p.—gqg.=1,— f(P).=z+ (axx+ By+e)/y. Since the
orthogonal distance from p to P is proportional to the quantity p.—gq., it
suffices to organize the dual set as in Theorem 4 to be able to report the
closest point to a query plane in O(log? n) time and O(n’) space. [

96 BERNARD CHAZELLE

4.3. Computing Nearest-Neighbors in E?

Some of the ideas developed above can also be used to improve on the
best algorithms known for computing the closest neighbor of a query point
in three dimensions (Dobkin and Lipton, 1976; Yao, in press). The
problem is that of preprocessing a set S of n points {p;,.., p,} in E’, so
that for any test point ¢, an index m such that [Vi (1<i<n)|d(q, p,) <
d(q, p;)] can be determined very effectively. Let P(n), S(n), and Q(n) be
respectively the preprocessing time, storage, and query time of a solution to
this problem. The solution given in Dobkin and Lipton (1976) for the 2-
dimensional version of this problem can be generalized to E°. It consists of
solving a point-location problem in the complex created by the n(n—1)/2
bisecting planes. This can be done in Q(n)= O(log n) time, but the price to
pay is a tremendously large S(n) = O(n'*) storage requirement. This can be
improved by using the point-location algorithm described above, which
leads to S(n)= O(n®) and Q(n)= O(log® n). This does not, however, con-
stitute an improvement over the method proposed by Yao (in press),
whose complexity in P(n)= S(n)=0(n’logn) and Q(n)= O(log? n).

We show here how the basic idea of nested binary search used
throughout in this paper can be used to extend Shamos’s scheme for 2d-
closest-point problems (Shamos, 1975), and produce a substantial savings
in storage. We next describe a nearest-neighbor algorithm, quite simple
conceptually, with the following features: S(n)= P(n)= 0(n*) and Q(n)=
O(log? n).

Let V(S) denote the Voronoi diagram of S. In (Seidel, 1981) Seidel
describes an optimal method for computing convex hulls in E%*. Using a
duality argument it is possible to adapt Seidel’s algorithm for 4d-convex
hulls so as to compute V(S) in O(n?) time. In the following we will denote
by fs(i, j) the face of V(S) supported by the bisector between p, and p;.
Suppose now that the points p,,.., p, appear X-sorted in this order. As
usual, our underlying search structure T is a complete binary tree over the
n objects, here in left-to-right order, p,,.., p,. Let v be an internal node of
T and let w, (resp. w,) be the left (resp. right) child of v. We define J(v) to
be the set of faces in the Voronoi diagram of I(v), whose corresponding
points lie in /(w;) and I(w,). More precisely, we have

J(v)= {fl(u)(ia Jliellw,)and je I(Wz)}~

Recall that I(v) is the set of points p, that appear at the leaves of the sub-
tree rooted at v. We next prove the following fact.

LEMMA 2. Any line L parallel to the X axis intersects one and only one

face of J(v).

HOW TO SEARCH IN HISTORY 97

Proof. Let L intersect the face fj.,(i, j); i€ I(w,), jeI(w,). Since the
vector normal to f,,(i, /), p;p,, has positive X coordinate, the nearest
neighbor of a point traveling along L in ascending X order will be suc-
cessively p; then p;, when crossing the face f,)(i, j). This shows that L can
intersect at most one face in J(v). On the other hand, for any point position
of L, the traveling point will start from x = —oo with its nearest neighbor
in I(w,), eventually to end up having its nearest neighbor in I(w,). This
shows that L always intersects at least one face of J(v), which completes
the proof. |}

It follows from Lemma 2 that the projection of J(v) on the YZ plane is a
planar graph and that the projections of no two faces can intersect strictly.
We can thus preprocess this graph for efficient searching. This will allow us
to determine, in O(log n) time, which face of J(v) intersects the line L pass-
ing through the query point, from which we can decide where to branch in
the tree 7. We will thus keep in v a pointer to a data structure DS(J(v)),
which will be essentially a planar point location structure (Edelsbrunner
etal., in press; Kirkpatrick, 1983). Since Edelsbrunner et al’s method (in
press) as well as Kirkpatrick’s (1983) require only linear preprocessing
time, given the clockwise order of the edges around each vertex, and since
we can compute J(v) from V(I(v)) by a simple depth-first search, both P(n)
and Q(n) satisfy the relation: R(1)= 1 and R(n)=2R(n/2)+ O(n?), whence
R(n)= O(n?). Note that, in general, keeping the adjacencies vertex/edge
sorted is not a problem, since the degree of a vertex in a 3-dimensional
Voronoi diagram is 4 , barring singularities (i.e., more than four points on
a common sphere).

THEOREM 6. It is possible to preprocess n points in O(n?) time and space,
so that any near-neighbor query can be answered in O(log? n) time.

5. CONCLUSIONS AND FURTHER RESEARCH

We have presented a general scheme for solving a class of problems
related to the history of a dynamic data structure. In the various geometric
applications given in this paper, we have used one coordinate to set the
order between objects, and the two others to define the history. It would be
very interesting to study the possibility of dynamizing this scheme, ie.,
allowing updates in the overall geometric structure, especially in light of
recent advances in the area of dynamization (Bently and Saxe, 1980; Over-
mars, 1983; van Leeuwen and Wood, 1980).

One may wonder whether it is possible to generalize the 3-dimensional
point-location algorithm given here to arbitrary dimensions. The major dif-

98 BERNARD CHAZELLE

ficulty seems to come from the fact that it is not clear at all that by reduc-
ing the problem to lower dimensions one is always guaranteed a total
ordering among projections. This problem does not arise in three dimen-
sions, for the edges of a planar graph can always be ordered, but what can
be said in E“? Also in the algorithm presented here, we had to use caps
instead of faces as our basic objects so as to avoid a quadratic blow-up in
the process of reducing dimension. Generalizing this remedy to higher
dimensions may be a difficult problem of topology, and one should consult
(Zaslavsky, 1975) for egetting a sense of the intricacies of hyperplane
arrangements in E.

REEERENCES

BENTLEY, J. L., AND OTTMANN, T. (1979), Algorithms for reporting and counting geometric
intersections, [EEE Trans. Comput. C-28, 643-647.

BENTLEY, J. L., AND Saxe, J. B. (1980), Decomposable searching problems. I. Static-to-
dynamic transformation, J. Algorithms 1 301-348.

CHAZELLE, B. (1983), Filtering search: A new approach to query-answering, in “Proc. 24th
Annu. Sympos. Found. Comput. Sci.,” p. 122-132.

CoLE, R. (1983), “Searching and Storing Similar Lists,” Tech. Rep. No. 88, New York Univer-
Sity. :

DoskIN, D. P., aNp LipTON, R. J. (1976), Multidimensional searching problems, STAM J.
Comput. S, 181-186.

DoskIN, D. P., aNp Munro. J. 1. (1980), Efficient uses of the past, in “Proc. 21st Annu.
Found. of Comput. Sci. Sympos.,” pp. 200-206.

EDeLsBRUNNER, H. GuiBas, L., aNp Stoirl, J. (in press), Optimal point location in a
monotone subdivision, STAM J. Comput.

Fuchs, H., KEpEM, Z. M., AND NAYLOR, B. (1980), On visible surface generation by a priori
tree structures, Comput. Graphics 14 124-133.

KIrRkPATRICK. D. G. (1983), Optimal search in planar subdivisions, STAM J. Comput. 12, No.
1, 28-35.

Leg, D. T., AND PREPARATA, F. P. (1977), Location of a point in a planar subdivision and its
applications, STAM J. Comput. 6, 594-606.

Lipsky, W., AND PREPARATA, F. P. (1981), Segments, rectangles, contours, J. Algorithms 2,
63-76.

LirToN, R. J., AND TarJaN, R. E. (1977), Applications of a planar separator theorem, in
“Proc. 18th Annu. Found. of Comput. Sci. Sympos., pp. 162-170.

McCRreiGHT, E. M. (1980), “Efficient Algorithms for Enumerating Intersecting Intervals and
Rectangles,” Tech. Report. Xerox PARC, CSL-80-9.

OvERMARS, M. H. (1981), “Searching in the Past I,” Report RUU-CS-81-7, University of
Utrecht, The Netherlands.

OVERMARS, M. H. (1983), “The Design of Dynamic Data Structures,” Ph. D. thesis, University
of Utrecht, The Netherlands.

SEIDEL, R. (1981), “A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions,”
Master’s thesis, Techn. Report 81-14, Univ. British Columbia, Vancouver, Canada.

SHaMos, M. L. (1975), Geometric complexity, in “Proc. 7th ACM SIGACT Sympos.,
pp. 224-233.

HOW TO SEARCH IN HISTORY 99

VAN LEEUWEN, J., aND WooD, D. (1980), Dynamization of decomposable searching problems,
Inform. Process. Lett. 10, 51-56.

WiLLaRrD, D. E. (in press), New data structures for orthogonal queries, STAM J. Compur.

Yao, A. C. (in press), “On the Preprocessing Cost in Multidimensional Search, Tech. Rep.,
IBM San Jose Research Center.

ZasLavsky, T. (1975), Facing up to arrangements: Face-count formulas for partitions of space
by hyperplanes, Mem. Amer. Math. Soc. 1, Tssue 1, No. 154.

